Influence of temperature on the embedding strength

In order to determine the influence of the temperature on the embedding strength at the yield threshold, 150 tests were carried out using 8 mm dowels. The tests were performed on samples of Pinus sylvestris L. with density in the range between 489 kg/m3 and 679 kg/m3 with an initial moisture content of about 11%. The tests were carried out in the longitudinal and transversal directions to the wood grains, with the temperature varying from 20°C to 240°C. The tests and the specimen dimensions follow the standard NF-EN 383.ZusammenfassungZum Bestimmen der Lochleibungsfestigkeit bei zulässiger Verformung wurden 150 Prüfungen mit 8-mm Dübeln vorgenommen. Die Kiefernproben (P. sylvestris) mit Dichten zwischen 489 kg/m3 und 679 kg/m3 hatten eine Ausgangsfeuchte von rund 11%. Die Prüfungen wurden parallel und senkrecht zur Faser durchgeführt. Die Temperatur variierte zwischen°C 20 und 240°C. Tests und Probenabmessungen entsprachen dem Standard NF-EN 383.

[1]  T. Wilkinson Dowel Bearing Strength , 2000 .

[2]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[3]  Jean-François Bocquet Modelisation des deformations locales du bois dans les assemblages broches et boulonnes , 1997 .

[4]  E. L. Back,et al.  Glass transitions of wood components hold implications for molding and pulping processes [Wood and paper materials]. , 1982 .

[5]  Robert Pelton The influence of hydrodynamic forces on retention aid performance: model experiments , 1984 .

[6]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[7]  D. Goring,et al.  Thermal softening of lignin, hemicellulose and cellulose , 1963 .

[8]  Jerrold E. Winandy,et al.  The chemistry of wood strength , 2012 .

[9]  Alfred J. Stamm,et al.  Principles of Wood Science and Technology , 2013, Springer Berlin Heidelberg.

[10]  A. P. Schniewind,et al.  Performance of structural wood members exposed to fire , 1975 .

[11]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .

[12]  H. A. Smith,et al.  Forest products laboratory. , 1922 .

[13]  Roger M. Rowell,et al.  The Chemistry of solid wood , 1984 .

[14]  Natalino Gattesco,et al.  Strength and Local Deformability of Wood Beneath Bolted Connectors , 1998 .

[15]  G. M. Irvine,et al.  The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis , 1984 .

[16]  P. Clancy,et al.  Compression mechanical properties of wood at temperatures simulating fire conditions , 2001 .

[17]  L. Salmén Viscoelastic properties ofin situ lignin under water-saturated conditions , 1984 .

[18]  D. Kretschmann,et al.  The Mechanical Properties of Wood , 1915 .

[19]  Ic Moore,et al.  Effect of Pyrolytic Temperatures on the Longitudinal Strength of Dry Douglas-Fir , 1973 .

[20]  W. Cǒté,et al.  Principles of Wood Science and Technology: I Solid Wood , 1977 .

[21]  E. Jakab,et al.  Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry , 1988, Wood Science and Technology.