On the foundation of stability

The concept of stability à la von Neumann and Morgenstern, which is composed of a pair of internal and external stability requirements, formalizes the idea of standard of behavior. This paper studies the decision-theoretic foundation of stability, by establishing epistemic conditions for a “stable” pattern of behavior in the context of strategic interaction.

[1]  J. Banks,et al.  Toward a history of game theory , 1995 .

[2]  R. Oladi Strategic quotas on foreign investment and migration , 2004 .

[3]  Xiao Luo Conservative Stable Standards of Behavior and φ-Stable Sets , 2006 .

[4]  David Lewis Convention: A Philosophical Study , 1986 .

[5]  Ezra Einy,et al.  Convex Games and Stable Sets , 1996 .

[6]  訓嗣 中西 Reexamination of the International Export Quota Game through the Theory of Social Situations , 1996 .

[7]  David Pearce Rationalizable Strategic Behavior and the Problem of Perfection , 1984 .

[8]  Shlomo Weber,et al.  The graph of Lindahl correspondence as the unique von Neumann-Morgenstern abstract stable set , 1997 .

[9]  B. Bernheim Rationalizable Strategic Behavior , 1984 .

[10]  Epistemic Conditions for Equilibrium in Beliefs without Independence , 1996 .

[11]  Xiao Luo General systems and ϕ-stable sets — a formal analysis of socioeconomic environments , 2001 .

[12]  Kenneth J. Arrow,et al.  Frontiers of Economics , 1987 .

[13]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[14]  Ad M. A. van Deemen,et al.  A note on generalized stable sets , 1991 .

[15]  Lars Ehlers,et al.  Von Neumann-Morgenstern stable sets in matching problems , 2007, J. Econ. Theory.

[16]  R. Aumann Backward induction and common knowledge of rationality , 1995 .

[17]  Joseph Greenberg,et al.  An application of the theory of social situations to repeated games , 1989 .

[18]  Licun Xue,et al.  Stable agreements in infinitely repeated games , 2002, Math. Soc. Sci..

[19]  R. Oladi Stable Tariffs and Retaliations , 2005 .

[20]  Xiao Luo,et al.  Stable equilibrium in beliefs in extensive games with perfect information , 2001 .

[21]  R. Kirk CONVENTION: A PHILOSOPHICAL STUDY , 1970 .

[22]  Kin Chung Lo,et al.  Equilibrium in Beliefs under Uncertainty , 1996 .

[23]  E. Kalai,et al.  An Admissible Set Occurring in Various Bargaining Situations , 1977 .

[24]  Christian Ewerhart,et al.  Rationality and the definition of consistent pairs , 1998, Int. J. Game Theory.

[25]  Larry Samuelson,et al.  Dominated strategies and common knowledge , 1992 .

[26]  Mamoru Kaneko,et al.  Epistemic logics and their game theoretic applications: Introduction , 2002 .

[27]  J. Weibull,et al.  Strategy subsets closed under rational behavior , 1991 .

[28]  Dov Monderer,et al.  MULTISTAGE SITUATIONS . , 2002 .

[29]  Xiao Luo,et al.  Stability, sequential rationality, and subgame consistency , 2007 .

[30]  Effrosyni Diamantoudi Stable Cartels Revisited , 2001 .

[31]  E. Einy,et al.  Stability of the core mapping in games with a countable set of players , 1997 .

[32]  M. Shubik Game theory in the social sciences: Concepts and solutions , 1982 .

[33]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .

[34]  J. Muckstadt A Model for a Multi-Item, Multi-Echelon, Multi-Indenture Inventory System , 1973 .

[35]  B. Shitovitz Optimistic stability in games of perfect information , 1994 .

[36]  Extending communication-proof equilibrium to infinite games , 2001 .

[37]  Bayesian Rationality,et al.  CORRELATED EQUILIBRIUM AS AN EXPRESSION OF , 1987 .

[38]  Xiao Luo,et al.  Mutually acceptable courses of action , 2009 .

[39]  B. Shitovitz,et al.  The optimistic stability of the core of mixed markets , 1994 .

[40]  Steven Tadelis Pareto Optimality and Optimistic Stability in Repeated Extensive Form Games , 1996 .

[41]  M. Chwe Farsighted Coalitional Stability , 1994 .

[42]  Licun Xue,et al.  Nonemptiness of the Largest Consistent Set , 1997 .

[43]  Equilibrium binding agreements under diverse behavioral assumptions , 2001 .

[44]  Noritsugu Nakanishi On the existence and efficiency of the von Neumann-Morgenstern stable set in a n-player prisoners' dilemma , 2001, Int. J. Game Theory.

[45]  1 What Is Game Theory Trying to Accomplish ? , 1985 .

[46]  L. Xue,et al.  Coalitional stability under perfect foresight , 1998 .

[47]  Joachim Rosenmüller,et al.  A characterization of vNM-stable sets for linear production games , 2000, Int. J. Game Theory.

[48]  Ezra Einy,et al.  Symmetric von Neumann-Morgenstern stable sets in pure exchange economies , 2003, Games Econ. Behav..

[49]  Joseph Greenberg,et al.  Deriving strong and coalition-proof nash equilibria from an abstract system , 1989 .

[50]  Indrajit Ray,et al.  Correlated equilibrium as a stable standard of behavior , 1998 .

[51]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[52]  William F. Lucas,et al.  Von Neumann-Morgenstern stable sets , 1992 .

[53]  Joseph Greenberg,et al.  On the sensitivity of von Neumann and Morgenstern abstract stable sets: The stable and the individual stable bargaining set , 1992 .

[54]  Shigeo Muto,et al.  Farsighted Stability in an n-Person Prisoner’s Dilemma , 2005, Int. J. Game Theory.

[55]  Polly S Nichols,et al.  Agreeing to disagree. , 2005, General dentistry.

[56]  Larry Samuelson,et al.  “Cautious” utility maximization and iterated weak dominance , 1992 .

[57]  Marco Mariotti,et al.  A Model of Agreements in Strategic Form Games , 1997 .

[58]  G. Arce,et al.  Stability Criteria for Social Norms with Applications to the Prisoner's Dilemma , 1994 .

[59]  María Elena Iñarra García,et al.  The supercore for normal-form games , 2003, J. Econ. Theory.

[60]  R. Aumann Correlated Equilibrium as an Expression of Bayesian Rationality Author ( s ) , 1987 .

[61]  Sergiu Hart,et al.  Formation of cartels in large markets , 1974 .

[62]  Licun Xue,et al.  Negotiation-proof Nash equilibrium , 2000, Int. J. Game Theory.

[63]  Joseph Greenberg,et al.  (Sophisticated) Stable Sets in Exchange Economies , 2002, Games Econ. Behav..

[64]  Joseph Greenberg,et al.  The Theory of Social Situations: An Alternative Game-Theoretic Approach , 1990 .

[65]  Herman Monsuur,et al.  Stable sets and standards of behaviour , 2001, Soc. Choice Welf..

[66]  R. Aumann,et al.  Epistemic Conditions for Nash Equilibrium , 1995 .

[67]  Ron Holzman,et al.  Core and Stable Sets of Large Games Arising in Economics , 1996 .

[68]  P. Malliavin Infinite dimensional analysis , 1993 .

[69]  E. Iñarra,et al.  The supercore for normal-form games , 2007 .

[70]  Xiao Luo,et al.  A Unified Approach to Information, Knowledge, and Stability , 2004 .

[71]  J. Harsanyi An Equilibrium-Point Interpretation of Stable Sets and a Proposed Alternative Definition , 1974 .