Efficient energy-preserving integrators for oscillatory Hamiltonian systems
暂无分享,去创建一个
Bin Wang | Wei Shi | Xinyuan Wu | Bin Wang | Xinyuan Wu | Wei Shi
[1] Xinyuan Wu,et al. A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems☆ , 2012 .
[2] J. M. Franco. New methods for oscillatory systems based on ARKN methods , 2006 .
[3] Wei Shi,et al. On symplectic and symmetric ARKN methods , 2012, Comput. Phys. Commun..
[4] L. Shampine. Conservation laws and the numerical solution of ODEs, II , 1999 .
[5] T. Schlick,et al. Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .
[6] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[7] Xinyuan Wu,et al. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations , 2012 .
[8] G. J. Cooper. Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .
[9] E. Hairer. Energy-preserving variant of collocation methods 1 , 2010 .
[10] F. Iavernaro,et al. High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .
[11] G. Quispel,et al. A new class of energy-preserving numerical integration methods , 2008 .
[12] A. Murua,et al. Preserving first integrals and volume forms of additively split systems , 2007 .
[13] T. E. Simos,et al. Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs , 2009 .
[14] M. Tuckerman,et al. Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. , 2004, Physical review letters.
[15] F. Iavernaro,et al. Conservative Block‐Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems , 2008 .
[16] David Cohen,et al. Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review , 2006 .
[17] Jianlin Xia,et al. Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods , 2012 .
[18] Jianlin Xia,et al. Order conditions for ARKN methods solving oscillatory systems , 2009, Comput. Phys. Commun..
[19] Elena Celledoni,et al. On conjugate B-series and their geometric structure , 2010 .
[20] Antonella Zanna,et al. Preserving algebraic invariants with Runge-Kutta methods , 2000 .
[21] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[22] Mark E. Tuckerman,et al. Reversible multiple time scale molecular dynamics , 1992 .
[23] Elena Celledoni,et al. Energy-Preserving Integrators and the Structure of B-series , 2010, Found. Comput. Math..
[24] S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .
[25] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[26] Jianlin Xia,et al. Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations , 2012, J. Comput. Phys..
[27] Arieh Iserles,et al. B-SERIES METHODS CANNOT BE VOLUME-PRESERVING , 2007 .
[28] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[29] Pablo Martín,et al. A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.
[30] Bin Wang,et al. ERKN integrators for systems of oscillatory second-order differential equations , 2010, Comput. Phys. Commun..
[31] F. Iavernaro,et al. s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .
[32] L. Brugnano,et al. Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods) , 2009, 0910.3621.
[33] Ernst Hairer,et al. Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples , 2004 .
[34] Michele Ceriotti,et al. Efficient multiple time scale molecular dynamics: Using colored noise thermostats to stabilize resonances. , 2010, The Journal of chemical physics.
[35] Peter Betsch,et al. Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints , 2006 .
[36] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[37] Ernst Hairer,et al. Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..
[38] Robert D. Skeel,et al. Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..
[39] R. Skeel,et al. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .
[40] Ernst Hairer,et al. ON ENERGY CONSERVATION OF THE SIMPLIFIED TAKAHASHI-IMADA METHOD , 2009 .
[41] G. R. W. Quispel,et al. Linearization-preserving self-adjoint and symplectic integrators , 2009 .
[42] G. Quispel,et al. Energy-preserving Runge-Kutta methods , 2009 .
[43] Bin Wang,et al. Two-step extended RKN methods for oscillatory systems , 2011, Comput. Phys. Commun..
[44] Xinyuan Wu,et al. Note on derivation of order conditions for ARKN methods for perturbed oscillators , 2009, Comput. Phys. Commun..
[45] Bin Wang,et al. Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems , 2010, Comput. Phys. Commun..
[46] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .