Efficient energy-preserving integrators for oscillatory Hamiltonian systems

In this paper, we focus our attention on deriving and analyzing an efficient energy-preserving formula for the system of nonlinear oscillatory or highly oscillatory second-order differential equations q ? ( t ) + Mq ( t ) = f q ( t ) , where M is a symmetric positive semi-definite matrix with M ? 1 and f ( q ) = - ? q U ( q ) is the negative gradient of a real-valued function U ( q ) . This system is a Hamiltonian system with the Hamiltonian H ( p , q ) = 1 2 p T p + 1 2 q T Mq + U ( q ) . The energy-preserving formula exactly preserves the Hamiltonian. We analyze in detail the properties of the energy-preserving formula and propose new efficient energy-preserving integrators in the sense of numerical implementation. The convergence analysis of the fixed-point iteration is presented for the implicit integrators proposed in this paper. It is shown that the convergence of implicit Average Vector Field methods is dependent on M , whereas the convergence of the new energy-preserving integrators is independent of M . The Fermi-Pasta-Ulam problem and the sine-Gordon equation are carried out numerically to show the competence and efficiency of the novel integrators in comparison with the well-known Average Vector Field methods in the scientific literature.

[1]  Xinyuan Wu,et al.  A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems☆ , 2012 .

[2]  J. M. Franco New methods for oscillatory systems based on ARKN methods , 2006 .

[3]  Wei Shi,et al.  On symplectic and symmetric ARKN methods , 2012, Comput. Phys. Commun..

[4]  L. Shampine Conservation laws and the numerical solution of ODEs, II , 1999 .

[5]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[6]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[7]  Xinyuan Wu,et al.  A new high precision energy-preserving integrator for system of oscillatory second-order differential equations , 2012 .

[8]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[9]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[10]  F. Iavernaro,et al.  High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .

[11]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[12]  A. Murua,et al.  Preserving first integrals and volume forms of additively split systems , 2007 .

[13]  T. E. Simos,et al.  Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs , 2009 .

[14]  M. Tuckerman,et al.  Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. , 2004, Physical review letters.

[15]  F. Iavernaro,et al.  Conservative Block‐Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems , 2008 .

[16]  David Cohen,et al.  Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review , 2006 .

[17]  Jianlin Xia,et al.  Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods , 2012 .

[18]  Jianlin Xia,et al.  Order conditions for ARKN methods solving oscillatory systems , 2009, Comput. Phys. Commun..

[19]  Elena Celledoni,et al.  On conjugate B-series and their geometric structure , 2010 .

[20]  Antonella Zanna,et al.  Preserving algebraic invariants with Runge-Kutta methods , 2000 .

[21]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[23]  Elena Celledoni,et al.  Energy-Preserving Integrators and the Structure of B-series , 2010, Found. Comput. Math..

[24]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[25]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[26]  Jianlin Xia,et al.  Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations , 2012, J. Comput. Phys..

[27]  Arieh Iserles,et al.  B-SERIES METHODS CANNOT BE VOLUME-PRESERVING , 2007 .

[28]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[29]  Pablo Martín,et al.  A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.

[30]  Bin Wang,et al.  ERKN integrators for systems of oscillatory second-order differential equations , 2010, Comput. Phys. Commun..

[31]  F. Iavernaro,et al.  s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .

[32]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods) , 2009, 0910.3621.

[33]  Ernst Hairer,et al.  Energy Conservation with Non-Symplectic Methods: Examples and Counter-Examples , 2004 .

[34]  Michele Ceriotti,et al.  Efficient multiple time scale molecular dynamics: Using colored noise thermostats to stabilize resonances. , 2010, The Journal of chemical physics.

[35]  Peter Betsch,et al.  Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints , 2006 .

[36]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[37]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[38]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[39]  R. Skeel,et al.  Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .

[40]  Ernst Hairer,et al.  ON ENERGY CONSERVATION OF THE SIMPLIFIED TAKAHASHI-IMADA METHOD , 2009 .

[41]  G. R. W. Quispel,et al.  Linearization-preserving self-adjoint and symplectic integrators , 2009 .

[42]  G. Quispel,et al.  Energy-preserving Runge-Kutta methods , 2009 .

[43]  Bin Wang,et al.  Two-step extended RKN methods for oscillatory systems , 2011, Comput. Phys. Commun..

[44]  Xinyuan Wu,et al.  Note on derivation of order conditions for ARKN methods for perturbed oscillators , 2009, Comput. Phys. Commun..

[45]  Bin Wang,et al.  Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems , 2010, Comput. Phys. Commun..

[46]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .