Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr

The scanning electron microscope (SEM)–based electron backscattered diffraction (EBSD)/stereology technique quantitatively establishes distributions of the crystallographic characteristics of environmental-fatigue crack features for slightly overaged Al-Zn-Cu-Mg-X (X = Zr or Mn) alloys stressed in the low-growth-rate regime. Results for these homogeneous slip alloys conform to a substantial companion study of planar slip-prone Al-Cu-Mg/Li. Transgranular-crack characteristics are similar for the Mn and Zr variants, independent of grain size and recrystallization. Two morphologies of facetlike features exhibit a wide range of crystallographic orientations, change character at grain boundaries indicating an important role of grain orientation, and form in highly tensile-stressed spatial orientations about a crack tip. Similar characteristics for Al-Zn and Al-Cu suggest a common damage mechanism, speculatively attributed to hydrogen-environment embrittlement by decohesion. Slip-deformation band cracking resulting in facets near {111}, stimulated by H-enhanced localized plasticity, is not a viable mechanism for environmental fatigue. Repetitively stepped facets with surface curvature may involve H-enhanced cleavage along {100} or {110} planes subsequently distorted by plasticity. Broad-flat facets speculatively result from tensile stress-based cracking through dislocation cell structure, evolved by cyclic plasticity and containing trapped H.

[1]  Andrea Carpinteri,et al.  Handbook of fatigue crack propagation in metallic structures , 1994 .

[2]  J. Nelson,et al.  The application of a photogrammetric technique to the determination of the orientation of stress-corrosion fractures , 1979 .

[3]  G. Yoder,et al.  Prediction of slip-band facet angle in the fatigue crack growth of an AlLi alloy , 1988 .

[4]  R. Sunder Fatigue as a process of cyclic brittle microfracture , 2005 .

[5]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[6]  S. Agnew,et al.  Uncertainty in the determination of fatigue crack facet crystallography , 2005 .

[7]  J. Petit,et al.  Influence of ambient atmosphere on fatigue crack growth behaviour of metals , 1994 .

[8]  H. Birnbaum,et al.  Direct observations of the effect of hydrogen on the behavior of dislocations in iron , 1983 .

[9]  Vikram Deshpande,et al.  Scaling of discrete dislocation predictions for near-threshold fatigue crack growth , 2003 .

[10]  C. Beevers Fatigue crack growth characteristics at low stress intensities of metals and alloys , 1977 .

[11]  Richard P. Gangloff,et al.  Fracture Mechanics: Perspectives and Directions (Twentieth Symposium) , 1989 .

[12]  J. Knott,et al.  Crystallographic fatigue crack growth in aluminium alloys , 1975 .

[13]  Ian M. Robertson,et al.  Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals , 2002 .

[14]  H. Flower,et al.  The micromechanisms of fatigue crack growth in a commercial Al-Zn-Mg-Cu alloy , 1982 .

[15]  C. Sarrazin-Baudoux,et al.  6.05 – Environmentally Assisted Fatigue in the Gaseous Atmosphere , 2003 .

[16]  A. K. Vasudevan,et al.  Crack tip driving forces and crack growth representation under fatigue , 2004 .

[17]  J. Bailon,et al.  Fatigue crack propagation mechanisms in an aluminium lithium alloy , 1995 .

[18]  Po-Shou Chen,et al.  Stereographic technique for quantitative analysis for cleavage plane orientation , 1991 .

[19]  R. Pippan,et al.  Dislocation modelling of fatigue cracks: an overview , 2001 .

[20]  Kumar V. Jata,et al.  Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy , 1986 .

[21]  K. Chan,et al.  Fracture along planar slip bands , 1980 .

[22]  D. Broek,et al.  On the formation of fatigue striations , 1972 .

[23]  R. Gangloff,et al.  Environment and microstructure effects on fatigue crack facet orientation in an AlLiCuZr alloy , 1996 .

[24]  B. Kong,et al.  Investigation of growth mechanism and orientation relationship of Mn-dispersoid in an Al-Zn-Mg-Mn alloy , 1996 .

[25]  C. P. Blankenship,et al.  Intrinsic fatigue crack growth , 1993, Metallurgical and Materials Transactions A.

[26]  M. Lewandowska,et al.  Cyclic behaviour of model Al-Li alloys: effect of the precipitate state , 2000 .

[27]  S. Lynch Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process, , 1988 .

[28]  Robert S. Piascik,et al.  Environmental fatigue of an Al-Li-Cu alloy: Part II. Microscopic hydrogen cracking processes , 1993, Metallurgical and Materials Transactions A.

[29]  J. Wert,et al.  Determination of crystallographic facet orientations on fracture surfaces , 1982 .

[30]  Julia King,et al.  The effect of frequency and microstructure on corrosion fatigue crack propagation in high strength aluminium alloys , 1997 .

[31]  G. M. Bond,et al.  The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys , 1987 .

[32]  P. Forsyth Fatigue damage and crack growth in aluminium alloys , 1963 .

[33]  Ming Gao,et al.  Chemical and metallurgical aspects of environmentally assisted fatigue crack growth in 7075-T651 aluminum alloy , 1988 .

[34]  A. Deschamps,et al.  Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties , 1998 .

[35]  R. Kelly,et al.  The Electrode Potential Dependence of Environment-Assisted Cracking of AA 7050 , 2000 .

[36]  J. Petit,et al.  On micromechanisms of fatigue crack growth in the 8090 T651 aluminium-lithium alloy , 1994 .

[37]  R. Wei,et al.  Fracture Mechanics: Perspectives and Directions , 1989 .

[38]  A. Reynolds,et al.  Cleavage crystallography of liquid metal embrittled aluminum alloys , 1991 .

[39]  R. D. McCright,et al.  Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys , 1979 .

[40]  R. Hertzberg,et al.  Character of Fatigue Fracture Surface Micromorphology in the Ultra-Low Growth Rate Regime , 1976 .

[41]  J. Vetrano,et al.  Influence of the particle size on recrystallization and grain growth in Al-Mg-X alloys , 1997 .

[42]  Ian M. Robertson,et al.  The effect of hydrogen on dislocation dynamics , 1999 .

[43]  S. Lynch Mechanisms of environmentally assisted cracking in AlZnMg single crystals , 1982 .

[44]  Robert P. Wei,et al.  Environmental fatigue crack propagation of aluminum alloys at low stress intensity levels , 1970 .

[45]  Gerbrand Ceder,et al.  The thermodynamics of decohesion , 2004 .

[46]  G. Pressouyre,et al.  Trap theory of Hydrogen embrittlement , 1980 .

[47]  J. Grosskreutz,et al.  Fine subgrain structure adjacent to fatigue cracks , 1972 .

[48]  Richard P. Gangloff,et al.  Crystallography of Fatigue Crack Propagation in Precipitation-Hardened Al-Cu-Mg/Li , 2007 .

[49]  E. Meletis,et al.  TECHNIQUES FOR DETERMINATION OF THE CRYSTALLOGRAPHIC CHARACTERISTICS OF ENVIRONMENTALLY INDUCED BRITTLE FRACTURES. , 1984 .

[50]  Richard P. Gangloff,et al.  Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys , 2001 .

[51]  S. Suresh Fatigue of materials , 1991 .

[52]  R. Gangloff,et al.  Determining fracture facet crystallography using electron backscatter patterns and quantitative tilt fractography , 1993 .

[53]  C. Buckley,et al.  Hydrogen in aluminum , 1997 .

[54]  S. Nam,et al.  Effects of Mn-dispersoids on the fatigue mechanism in an Al–Zn–Mg alloy , 1998 .

[55]  E. Meletis,et al.  The crystallography of stress corrosion cracking in face centered cubic single crystals , 1984 .

[56]  E. Starke,et al.  The effect of slip distribution on the monotonic and cyclic ductility of AlLi binary alloys , 1982 .

[57]  P. Ferreira,et al.  Hydrogen effects on the character of dislocations in high-purity aluminum , 1999 .

[58]  R. A. Oriani Whitney Award Lecture—1987: Hydrogen—The Versatile Embrittler , 1987 .