Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment

Abstract A new type of thin-film nanocomposite ( n -TFN) membrane was synthesized by the interfacial polymerization of a support layer containing acid modified multi-walled carbon nanotubes (MWNTs) and a thin-film layer containing nanosilver (nAg) particles. Microscopic characterization confirmed that MWNTs and nAg particles were distributed in the support layer and the thin-film layer, respectively. Spectroscopic characterization revealed the surface functionalities of the MWNT support layer, and nAg crystallinity and bonding components of the thin-film layer. MWNTs at 5.0 wt.% in the support layer and nAg particles at 10 wt.% in the thin-film layer enhanced the pure water permeability of the n -TFN membrane by 23% and 20%, respectively, compared to 0 wt.% of these components in their respective layers. Increases in pure water permeability and hydrophilicity of the n -TFN membrane were attributed to the diffusive effect of nanopores in the MWNTs. Salt (NaCl, Na 2 SO 4 ) rejections of the n -TFN membrane were similar to thin-film composite membranes without nAg particles. Pseudomonas aeruginosa PAO1 batch tests indicated greater anti-adhesive and antibacterial properties of the n -TFN membrane compared to similar membranes without nAg particles. This study demonstrated that the acid modified MWNTs and nAg particles enhance the permeability and anti-biofouling properties of thin-film nanocomposite membranes.

[1]  Joerg R. Jinschek,et al.  Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. , 2007, Nano letters.

[2]  Ching-Hong Yang,et al.  Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous media. , 2007, Environmental science & technology.

[3]  H C van der Mei,et al.  Physico-chemistry of initial microbial adhesive interactions--its mechanisms and methods for study. , 1999, FEMS microbiology reviews.

[4]  Eun-sik Kim,et al.  Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF) , 2009 .

[5]  Norman N. Li Advanced membrane technology and applications , 2008 .

[6]  Menachem Elimelech,et al.  Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes , 2001 .

[7]  Heechul Choi,et al.  Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. , 2011, Water research.

[8]  William J. Koros,et al.  Evolving beyond the thermal age of separation processes: Membranes can lead the way , 2004 .

[9]  Sangil Kim,et al.  High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix , 2008 .

[10]  O. Akhavan,et al.  Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. , 2009, Journal of colloid and interface science.

[11]  Mengiuan Li,et al.  Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research , 2009 .

[12]  M. Elimelech,et al.  Impact of Alginate Conditioning Film on Deposition Kinetics of Motile and Nonmotile Pseudomonas aeruginosa Strains , 2007, Applied and Environmental Microbiology.

[13]  D. White,et al.  New methodology for viability testing in environmental samples. , 2006, Molecular and cellular probes.

[14]  Changkun Liu,et al.  Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances , 2010 .

[15]  S. Mohajerzadeh,et al.  Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes , 2011 .

[16]  Yang Yang,et al.  Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[17]  Jun Ma,et al.  Fabrication and characterization of solution cast MWNTs/PEI nanocomposites , 2009 .

[18]  O. Akhavan,et al.  Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities , 2010 .

[19]  Peiyi Wu,et al.  MWNTs/Polyester Thin Film Nanocomposite Membrane: An Approach To Overcome the Trade-Off Effect between Permeability and Selectivity , 2010 .

[20]  Sangil Kim,et al.  Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment , 2007 .

[21]  Xiangke Wang,et al.  Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water , 2010 .

[22]  S. Mukhopadhyay,et al.  Thin Films for Coating Nanomaterials , 2005 .

[23]  Léna Brunet,et al.  Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. , 2009, Water research.

[24]  Chuyang Y. Tang,et al.  Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry , 2009 .

[25]  Menachem Elimelech,et al.  Antibacterial effects of carbon nanotubes: size does matter! , 2008, Langmuir : the ACS journal of surfaces and colloids.

[26]  Woo Nyon Kim,et al.  Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes , 2006 .

[27]  Yang Liu,et al.  The effects of pretreatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water , 2011 .

[28]  Yang Liu,et al.  Effects of silver nanoparticles on wastewater biofilms. , 2011, Water research.

[29]  Hsu-Chiang Kuan,et al.  Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite , 2007 .

[30]  Chihpin Huang,et al.  Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. , 2009, Water research.

[31]  F. Fairbrother,et al.  CCCXII.—Studies in electro-endosmosis. Part I , 1924 .

[32]  Eric M.V. Hoek,et al.  Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes , 2007 .

[33]  P. Alvarez,et al.  Properties of Membranes Containing Semi-dispersed Carbon Nanotubes , 2008 .

[34]  K. Matsushige,et al.  Chemical treatment and modification of multi-walled carbon nanotubes , 2002 .

[35]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[36]  W. Bruckard,et al.  A review of factors that affect contact angle and implications for flotation practice. , 2009, Advances in colloid and interface science.

[37]  Heng Liang,et al.  Integrative membrane coagulation adsorption bioreactor (MCABR) for enhanced organic matter removal in drinking water treatment , 2010 .

[38]  Y. S. Lin,et al.  Vertically aligned carbon nanotube membranes on macroporous alumina supports , 2007 .

[39]  Nanjundan Ashok Kumar,et al.  Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites , 2008 .

[40]  Han-Joo Lee,et al.  Antibacterial effect of nanosized silver colloidal solution on textile fabrics , 2003 .

[41]  P. Goh,et al.  Transport and separation properties of carbon nanotube-mixed matrix membrane , 2009 .

[42]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[43]  B. Min,et al.  Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties , 2007 .