A Comparison between Global and Local Orthogonal Collocation Methods for Solving Optimal Control Problems

A comparison is made between local and global orthogonal collocation methods for solving optimal control problems. The study is performed using an orthogonal collocation method called the Gauss pseudospectral method. In particular, this method is employed in two different ways. In the first approach, the method is applied globally and solutions are computed for various numbers of collocation points. In the second approach, the Gauss pseudospectral method is applied locally, meaning the problem is segmented, with each segment containing a small, fixed number of collocation points. Solutions are then computed for various numbers of equal-width segments. These two different approaches are then compared in terms of their accuracy and computational efficiency. The results of this study indicate that, for a given number of collocation points, global collocation is much more accurate than local collocation for smooth problems and can provide comparable results for problems with discontinuities. Furthermore, the results obtained in this paper indicate that for a desired accuracy on smooth problems the global approach is computationally more efficient. In order to substantiate the analysis, the comparison is performed on two examples with vastly different characteristics.

[1]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[2]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[3]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[4]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[5]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[6]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[7]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[8]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[9]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[10]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[11]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[13]  B. Silva,et al.  Dynamic Trajectory Optimization Between Unstable Steady-States of a Class of CSTRs , 2002 .

[14]  I. Michael Ross,et al.  A Pseudospectral Transformation of the Convectors of Optimal Control Systems , 2001 .

[15]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[16]  I. Michael Ross,et al.  A Spectral Patching Method for Direct Trajectory Optimization , 2000 .

[17]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[18]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[19]  Geoffrey T. Huntington,et al.  OPTIMAL RECONFIGURATION OF A TETRAHEDRAL FORMATION VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[20]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[21]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[22]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[23]  Bruce A. Conway,et al.  Discrete approximations to optimal trajectories using direct transcription and nonlinear programming , 1992 .

[24]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[25]  Anil V. Rao,et al.  EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .

[26]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[27]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[28]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[29]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[30]  G. Fairweather,et al.  Numerical Methods for Two – Point Boundary Value Problems , 2008 .

[31]  I. Michael Ross,et al.  A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .

[32]  I. Michael Ross,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[33]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[34]  L. Biegler,et al.  Convergence rates for direct transcription of optimal control problems with final-time equality constraints using collocation at Radau points , 2006, 2006 American Control Conference.

[35]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[36]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[37]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[38]  A. Rao,et al.  POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[39]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[40]  A. Rao,et al.  AAS 05-103 OPTIMAL CONFIGURATION OF SPACECRAFT FORMATIONS VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[41]  Waldy K. Sjauw,et al.  Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration , 2006 .

[42]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .