Mechanical Properties of Natural Cellular Materials

Natural cellular materials can be found nearly everywhere in nature: from wood to leaves and cork or looking at the human bone, these structures have been studied more intensively over the last decades. Some of them have been showing exceptional mechanical properties that can compete or even surpass their synthetic competitors. The following sections plan to give a concise overview of some of these materials and their mechanical properties.

[1]  Fábio A. O. Fernandes,et al.  Static and dynamic mechanical response of different cork agglomerates , 2015 .

[2]  J. F. Young,et al.  The Science and Technology of Civil Engineering Materials , 1997 .

[3]  Helena Pereira,et al.  Effect of density on the compression behaviour of cork , 2014 .

[4]  T. Seifert,et al.  Resin pocket occurrence in Norway spruce depending on tree and climate variables , 2010 .

[5]  J. Ganghoffer,et al.  Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture , 2013 .

[6]  M. A. Fortes,et al.  Growth stresses and strains in cork , 1992, Wood Science and Technology.

[7]  H. Pereira,et al.  THE PERIDERM DEVELOPMENT IN QUERCUS SUBER , 2004 .

[8]  S. Sánchez-Sáez,et al.  Dynamic crushing behaviour of agglomerated cork , 2015 .

[9]  Meng Gong,et al.  Fracture and fatigue in wood , 2003 .

[10]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[11]  H. P. Lee,et al.  Snoring source identification and snoring noise prediction. , 2007, Journal of biomechanics.

[12]  R. E. Mark,et al.  S2 Orientation of Microfibrils in Softwood Tracheids and Hardwood Fibers , 2005, IAWA Journal.

[13]  Helena Pereira,et al.  Cork : biology, production and uses , 2007 .

[14]  L. Gibson,et al.  Microdamage accumulation in bovine trabecular bone in uniaxial compression. , 2002, Journal of biomechanical engineering.

[15]  Sundeep Khosla,et al.  Sex steroids and the construction and conservation of the adult skeleton. , 2002, Endocrine reviews.

[16]  Michael D. Gilchrist,et al.  The creation of three-dimensional finite element models for simulating head impact biomechanics , 2003 .

[17]  Helena Pereira,et al.  The Cellular Structure of Cork from Quercus Suber L. , 1987 .

[18]  Tessaleno C. Devezas,et al.  Cork agglomerates as an ideal core material in lightweight structures , 2010 .

[19]  R. Ritchie Biological materials science. , 2008, Journal of The Mechanical Behavior of Biomedical Materials.

[20]  Gholamreza Rouhi,et al.  Biomechanics of Osteoporosis: The Importance of Bone Resorption and Remodeling Processes , 2012 .

[21]  G. Niebur,et al.  Biomechanics of trabecular bone. , 2001, Annual review of biomedical engineering.

[22]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[23]  M. T. Nogueira,et al.  The poison effect in cork , 1989 .

[24]  M. J. Matos,et al.  Innovation and sustainability in mechanical design through materials selection , 2006 .

[25]  Prof. Dr. Sherwin Carlquist,et al.  Comparative Wood Anatomy , 2001, Springer Series in Wood Science.

[26]  Alexander Clark,et al.  Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis , 2001 .

[27]  A. C. Day,et al.  Wood structure and identification , 1979 .

[28]  S. Zhang Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories , 1995, Wood Science and Technology.

[29]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[30]  K. Niklas,et al.  The Influence of Rays on the Transverse Elastic Anisotropy in Green Wood of Deciduous Trees , 2001 .

[31]  A. J. Panshin,et al.  Textbook of Wood Technology , 1964 .

[32]  Helena Pereira,et al.  The Effect of Growth Rate on the Structure and Compressive Properties of Cork , 1992 .

[33]  J. R. Sprague,et al.  Juvenile Wood in Forest Trees , 1998, Springer Series in Wood Science.

[34]  Vanda Oliveira,et al.  Variability of the compression properties of cork , 2014, Wood Science and Technology.

[35]  Thomas E. McLain,et al.  Quantitative wood anatomy-relating anatomy to transverse tensile strength , 2007 .

[36]  Helena Pereira,et al.  Effect of quality, porosity and density on the compression properties of cork , 2008, Holz als Roh- und Werkstoff.

[37]  O. Anjos,et al.  Variation of Extractable Compounds and Lignin Contents in Wood Fragments Used in the Aging of Wine Brandies , 2013 .

[38]  T. Keaveny,et al.  Dependence of yield strain of human trabecular bone on anatomic site. , 2001, Journal of biomechanics.

[39]  L. Benabou Predictions of compressive strength and kink band orientation for wood species , 2010 .

[40]  Filipe Teixeira-Dias,et al.  New composite liners for energy absorption purposes , 2013 .

[41]  Bruce J. Zobel,et al.  Wood Variation: Its Causes and Control , 1989 .

[42]  Helena Pereira,et al.  Tensile properties of cork in axial stress and influence of porosity, density, quality and radial position in the plank , 2011, European Journal of Wood and Wood Products.

[43]  R. Funada,et al.  Review — The Orientation of Cellulose Microfibrils in the cell walls of Tracheids in Conifers , 2005 .

[44]  P. Hoffmeyer,et al.  Mechano-sorptive creep mechanism of wood in compression and bending , 1989, Wood Science and Technology.

[45]  M. Ashby,et al.  The structure and mechanics of cork , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  Mahmoud M. Farag,et al.  Quantitative methods of materials substitution: Application to automotive components , 2008 .

[47]  Helena Pereira,et al.  Characterization of radial bending properties of cork , 2011, European Journal of Wood and Wood Products.

[48]  Ayhan Özçifçi,et al.  Effects of machining method and grain orientation on the bonding strength of some wood species , 2008 .

[49]  M. A. Fortes,et al.  Rate effects on the compression and recovery of dimensions of cork , 1988 .

[50]  Fábio A. O. Fernandes,et al.  Modelling impact response of agglomerated cork , 2014 .

[51]  Anne Thibaut,et al.  Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees , 2005, Trees.

[52]  S. Sánchez-Sáez,et al.  Experimental response of agglomerated cork under multi-impact loads , 2015 .

[53]  H. Pereira,et al.  Chemical composition and variability of cork from Quercus suber L. , 1988, Wood Science and Technology.

[54]  Rémy Willinger,et al.  Human head tolerance limits to specific injury mechanisms , 2003 .

[55]  Fábio A. O. Fernandes,et al.  Comparing the mechanical performance of synthetic and natural cellular materials , 2015 .

[56]  Debasis Sahoo,et al.  Composite FE Human Skull Model Validation and Development of Skull Fracture Criteria. , 2014 .