High-Order Accurate Methods for the Numerical Analysis of a Levitation Device
暂无分享,去创建一个
[1] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[2] B. Middendorf,et al. High‐Order Numerical Methods for the Thermal Activation of SMA Fibers , 2019, PAMM.
[3] D. Kuhl,et al. Electromagnetic Analysis Using High-Order Numerical Schemes in Space and Time , 2019 .
[4] B. Schröder,et al. Nonlinear thermo-electromagnetic analysis of inductive heating processes , 2015 .
[5] D. Kuhl,et al. Higher order accurate discontinuous and continuous p‐Galerkin methods for linear elastodynamics , 2013 .
[6] Francesca Rapetti,et al. An overlapping mortar element approach to coupled magneto-mechanical problems , 2010, Math. Comput. Simul..
[7] Alexander Düster,et al. Book Review: Leszek Demkowicz, Computing with hp‐adaptive finite elements, Volume 1, One and two dimensional elliptic and Maxwell problems , 2007 .
[8] Günther Meschke,et al. Numerical analysis of dissolution processes in cementitious materials using discontinuous and continuous Galerkin time integration schemes , 2007 .
[9] Patrick Ciarlet,et al. Augmented formulations for solving Maxwell equations , 2005 .
[10] Franck Assous,et al. Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .
[11] T. E. Motoasca. Electrodynamics in deformable solids for electromagnetic forming , 2003 .
[12] J. Bastos,et al. Electromagnetic Modeling by Finite Element Methods , 2003 .
[13] H. Brenner,et al. Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] Carretera de Valencia,et al. The finite element method in electromagnetics , 2000 .
[15] Ekkehard Ramm,et al. Generalized Energy–Momentum Method for non-linear adaptive shell dynamics , 1999 .
[16] S. Kurz,et al. A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling , 1998 .
[17] P. Deuflhard,et al. Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations , 1997 .
[18] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[19] W. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .
[20] P. J. Pahl,et al. Development of an implicit method with numerical dissipation from a generalized ingle-step algorithm for structural dynamics , 1988 .
[21] O. C. Zienkiewicz,et al. An alpha modification of Newmark's method , 1980 .
[22] Thomas J. R. Hughes,et al. Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .
[23] Long Chen. FINITE ELEMENT METHOD , 2013 .
[24] Harald Klingbeil. Elektromagnetische Feldtheorie: Ein Lehr- und Übungsbuch , 2011 .
[25] J. Hoffman. Adaptive Finite Element Methods for the Unsteady Maxwell ’ s Equations , 2003 .
[26] Wolfgang A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .
[27] Wolfgang M. Rucker,et al. Description of TEAM Workshop Problem 28 : An Electrodynamic Levitation Device , 1998 .
[28] Oszkar Biro,et al. CAD in Electromagnetism , 1991 .
[29] Jin Au Kong,et al. Finite element and finite difference methods in electromagnetic scattering , 1990 .
[30] T. Preston. Finite Elements for Electrical Engineers , 1984 .
[31] James Clerk Maxwell,et al. A dynamical theory of the electromagnetic , 1967 .
[32] Michael Faraday,et al. Experimental Researches in Electricity , 1880, Nature.
[33] Michael Faraday,et al. Experimental researches in electricity, eleventh series , 1837 .
[34] E. Lenz. Ueber die Bestimmung der Richtung der durch elektrodynamische Vertheilung erregten galvanischen Ströme , 1834 .