High-Order Accurate Methods for the Numerical Analysis of a Levitation Device

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  B. Middendorf,et al.  High‐Order Numerical Methods for the Thermal Activation of SMA Fibers , 2019, PAMM.

[3]  D. Kuhl,et al.  Electromagnetic Analysis Using High-Order Numerical Schemes in Space and Time , 2019 .

[4]  B. Schröder,et al.  Nonlinear thermo-electromagnetic analysis of inductive heating processes , 2015 .

[5]  D. Kuhl,et al.  Higher order accurate discontinuous and continuous p‐Galerkin methods for linear elastodynamics , 2013 .

[6]  Francesca Rapetti,et al.  An overlapping mortar element approach to coupled magneto-mechanical problems , 2010, Math. Comput. Simul..

[7]  Alexander Düster,et al.  Book Review: Leszek Demkowicz, Computing with hp‐adaptive finite elements, Volume 1, One and two dimensional elliptic and Maxwell problems , 2007 .

[8]  Günther Meschke,et al.  Numerical analysis of dissolution processes in cementitious materials using discontinuous and continuous Galerkin time integration schemes , 2007 .

[9]  Patrick Ciarlet,et al.  Augmented formulations for solving Maxwell equations , 2005 .

[10]  Franck Assous,et al.  Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .

[11]  T. E. Motoasca Electrodynamics in deformable solids for electromagnetic forming , 2003 .

[12]  J. Bastos,et al.  Electromagnetic Modeling by Finite Element Methods , 2003 .

[13]  H. Brenner,et al.  Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[15]  Ekkehard Ramm,et al.  Generalized Energy–Momentum Method for non-linear adaptive shell dynamics , 1999 .

[16]  S. Kurz,et al.  A novel formulation for 3D eddy current problems with moving bodies using a Lagrangian description and BEM-FEM coupling , 1998 .

[17]  P. Deuflhard,et al.  Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations , 1997 .

[18]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[19]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[20]  P. J. Pahl,et al.  Development of an implicit method with numerical dissipation from a generalized ingle-step algorithm for structural dynamics , 1988 .

[21]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[22]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[23]  Long Chen FINITE ELEMENT METHOD , 2013 .

[24]  Harald Klingbeil Elektromagnetische Feldtheorie: Ein Lehr- und Übungsbuch , 2011 .

[25]  J. Hoffman Adaptive Finite Element Methods for the Unsteady Maxwell ’ s Equations , 2003 .

[26]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[27]  Wolfgang M. Rucker,et al.  Description of TEAM Workshop Problem 28 : An Electrodynamic Levitation Device , 1998 .

[28]  Oszkar Biro,et al.  CAD in Electromagnetism , 1991 .

[29]  Jin Au Kong,et al.  Finite element and finite difference methods in electromagnetic scattering , 1990 .

[30]  T. Preston Finite Elements for Electrical Engineers , 1984 .

[31]  James Clerk Maxwell,et al.  A dynamical theory of the electromagnetic , 1967 .

[32]  Michael Faraday,et al.  Experimental Researches in Electricity , 1880, Nature.

[33]  Michael Faraday,et al.  Experimental researches in electricity, eleventh series , 1837 .

[34]  E. Lenz Ueber die Bestimmung der Richtung der durch elektrodynamische Vertheilung erregten galvanischen Ströme , 1834 .