Unraveling the deformation behavior of the Fe45Co25Ni10V20 high entropy alloy

[1]  Chuanwei Li,et al.  The influence of vanadium element on the microstructure and mechanical properties of (FeCoNi)100-xVx high-entropy alloys , 2022, Materials Characterization.

[2]  Xiaoyan Li,et al.  Short-Range Ordering and its Impact on Thermodynamic Property of High-Entropy Alloys , 2022, Acta Materialia.

[3]  Mengyao Zheng,et al.  In situ EBSD/DIC-based investigation of deformation and fracture mechanism in FCC- and L12-structured FeCoNiV high-entropy alloys , 2022, International Journal of Plasticity.

[4]  S. Gao,et al.  Postponing the fracture strain of ultrafine-grained 316LN steel by sequential activations of deformation modes at 77 K , 2022, Scripta Materialia.

[5]  Jing Zhang,et al.  Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy , 2022, Materials Today Communications.

[6]  M. Nai,et al.  Molecular dynamics study on the strengthening mechanisms of Cr-Fe-Co-Ni high-entropy alloys based on the generalized stacking fault energy , 2022, Journal of Alloys and Compounds.

[7]  Sunghak Lee,et al.  Effects of deformation-induced martensitic transformation on cryogenic fracture toughness for metastable Si8V2Fe45Cr10Mn5Co30 high-entropy alloy , 2021, Acta Materialia.

[8]  H. Kato,et al.  2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy , 2021 .

[9]  W. Choi,et al.  Computational design of V-CoCrFeMnNi high-entropy alloys: An atomistic simulation study , 2021 .

[10]  Jacob C. Huang,et al.  Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures , 2021 .

[11]  F. Yuan,et al.  Direct observation of chemical short-range order in a medium-entropy alloy , 2021, Nature.

[12]  G. Sha,et al.  Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy , 2021 .

[13]  R. Ritchie,et al.  Magnetically driven short-range order can explain anomalous measurements in CrCoNi , 2021, Proceedings of the National Academy of Sciences.

[14]  H. Sung,et al.  Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures , 2020 .

[15]  Jianzhong Jiang,et al.  Phase Selection, Lattice Distortions, and Mechanical Properties in High‐Entropy Alloys , 2020, Advanced Engineering Materials.

[16]  Sunghak Lee,et al.  Effects of transformation-induced plasticity (TRIP) on tensile property improvement of Fe45Co30Cr10V10Ni5-xMnx high-entropy alloys , 2020 .

[17]  H. Sung,et al.  Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy , 2019, Journal of Alloys and Compounds.

[18]  Sunghak Lee,et al.  Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation , 2019, Scripta Materialia.

[19]  H. Kato,et al.  Development of Strong and Ductile Metastable Face-Centered Cubic Single-Phase High-Entropy Alloys , 2019, Acta Materialia.

[20]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[21]  A. Dong,et al.  FCC-L12 ordering transformation in equimolar FeCoNiV multi-principal element alloy , 2019, Materials & Design.

[22]  D. Raabe,et al.  On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions , 2019, Journal of Alloys and Compounds.

[23]  C. Liu,et al.  Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy , 2019, Scripta Materialia.

[24]  Rainer Schwab Understanding the complete loss of uniform plastic deformation of some ultrafine-grained metallic materials in tensile straining , 2019, International Journal of Plasticity.

[25]  H. Kato,et al.  Novel Co-rich high entropy alloys with superior tensile properties , 2019, Materials Research Letters.

[26]  N. Tsuji,et al.  Mechanism of huge Lüders-type deformation in ultrafine grained austenitic stainless steel , 2019, Scripta Materialia.

[27]  J. Seol,et al.  Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures , 2018, Acta Materialia.

[28]  R. Ritchie,et al.  Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys , 2018, Proceedings of the National Academy of Sciences.

[29]  A. Schwedt,et al.  Temperature dependent strain hardening and fracture behavior of TWIP steel , 2018 .

[30]  B. Hu,et al.  High dislocation density–induced large ductility in deformed and partitioned steels , 2017, Science.

[31]  D. Raabe,et al.  Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity , 2017 .

[32]  D. Raabe,et al.  Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties , 2017, JOM.

[33]  C. Tasan,et al.  A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior , 2017 .

[34]  M. Jahazi,et al.  Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel , 2017 .

[35]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[36]  R. Misra,et al.  Deformation behavior of high yield strength – High ductility ultrafine-grained 316LN austenitic stainless steel , 2017 .

[37]  J. Speer,et al.  Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels , 2017, Metallurgical and Materials Transactions A.

[38]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[39]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[40]  Nack J. Kim,et al.  Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels , 2015 .

[41]  D. Raabe,et al.  Assessment of geometrically necessary dislocation levels derived by 3D EBSD , 2015 .

[42]  S. Sandlöbes,et al.  Linear complexions: Confined chemical and structural states at dislocations , 2015, Science.

[43]  C. Tasan,et al.  Design of a twinning-induced plasticity high entropy alloy , 2015 .

[44]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[45]  Dierk Raabe,et al.  A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility , 2014 .

[46]  H. Bhadeshia,et al.  Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels , 2014, 1401.5824.

[47]  Rainer Schwab,et al.  On the nature of the yield point phenomenon , 2013 .

[48]  A. Shan,et al.  Lüders-like deformation induced by delta-ferrite-assisted martensitic transformation in a dual-phase high-manganese steel , 2012 .

[49]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[50]  H. Urbassek,et al.  Transformation pathways in the solid-solid phase transitions of iron nanowires , 2009 .

[51]  J. Yeh Recent progress in high-entropy alloys , 2006 .

[52]  P. Kao,et al.  Transition of tensile deformation behaviors in ultrafine-grained aluminum , 2005 .

[53]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[54]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[55]  Peter Hähner,et al.  On the characteristics of Portevin-Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain-controlled tensile testing , 2002 .

[56]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[57]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[58]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[59]  G. Olson,et al.  A Perspective on Martensitic Nucleation , 1981 .

[60]  Morris Azrin,et al.  Transformation behavior of TRIP steels , 1978 .

[61]  Martin L. Green,et al.  A model for the FCC→HCP transformation, its applications, and experimental evidence , 1977 .

[62]  A. van den Beukel,et al.  Theory of the effect of dynamic strain aging on mechanical properties , 1975 .

[63]  G. B. Olson,et al.  A MECHANISM FOR THE STRAIN-INDUCED NUCLEATION OF MARTENSITIC TRANSFORMATIONS* , 1972 .

[64]  A. Pineau,et al.  Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system , 1972 .

[65]  R. Lagneborgj The martensite transformation in 18% Cr-8% Ni steels , 1964 .

[66]  H. M. Otte,et al.  The martensite transformation in stainless steel , 1963 .

[67]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[68]  N. Tsuji,et al.  Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes , 2018 .

[69]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[70]  J. M. Cowley X‐Ray Measurement of Order in Single Crystals of Cu3Au , 1950 .