Bombyx ortholog of the Drosophila eye color gene brown controls riboflavin transport in Malpighian tubules.

[1]  Meilin Zhu,et al.  "RNA-Guided Human Genome Engineering via Cas 9" (2013), by Prashant Mali, Luhan Yang, Kevin M. Esvelt, John Aach, Marc Guell, James E. DiCarlo, Julie E. Norville, and George M. Church , 2017 .

[2]  S. Sugano,et al.  Bm-muted, orthologous to mouse muted and encoding a subunit of the BLOC-1 complex, is responsible for the otm translucent mutation of the silkworm Bombyx mori. , 2017, Gene.

[3]  M. Reichelt,et al.  Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations , 2017, Scientific Reports.

[4]  T. Shimada,et al.  Identification of the silkworm quail gene reveals a crucial role of a receptor guanylyl cyclase in larval pigmentation. , 2016, Insect biochemistry and molecular biology.

[5]  Muwang Li,et al.  Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. , 2015, Journal of insect physiology.

[6]  R. Beeman,et al.  The ABCs of Eye Color in Tribolium castaneum: Orthologs of the Drosophila white, scarlet, and brown Genes , 2015, Genetics.

[7]  J. K. Kim,et al.  Riboflavin Accumulation and Molecular Characterization of cDNAs Encoding Bifunctional GTP Cyclohydrolase II/3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase, Lumazine Synthase, and Riboflavin Synthase in Different Organs of Lycium chinense Plant , 2014, Molecules.

[8]  Wei Wei,et al.  Heritable Genome Editing with CRISPR/Cas9 in the Silkworm, Bombyx mori , 2014, PloS one.

[9]  Q. Xia,et al.  Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. , 2014, Insect biochemistry and molecular biology.

[10]  Jianduo Zhang,et al.  CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori , 2014, Scientific Reports.

[11]  T. Van Leeuwen,et al.  The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. , 2014, Insect biochemistry and molecular biology.

[12]  Yongping Huang,et al.  The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori , 2013, Cell Research.

[13]  Chris P. Ponting,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2013, Cell reports.

[14]  Muwang Li,et al.  Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of ok mutants of the silkworm, Bombyx mori. , 2013, Insect biochemistry and molecular biology.

[15]  A. Bacher,et al.  The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system , 2013, The FEBS journal.

[16]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[17]  Muwang Li,et al.  Reduced expression of the dysbindin-like gene in the Bombyx mori ov mutant exhibiting mottled translucency of the larval skin. , 2013, Genome.

[18]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[19]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[20]  H. Abe,et al.  A homolog of the human Hermansky–Pudluck syndrome-5 (HPS5) gene is responsible for the oa larval translucent mutants in the silkworm, Bombyx mori , 2012, Genetica.

[21]  H. Fujiwara,et al.  siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos , 2011, PloS one.

[22]  T. Shimada,et al.  Positional cloning of silkworm white egg 2 (w‐2) locus shows functional conservation and diversification of ABC transporters for pigmentation in insects , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[23]  T. Shimada,et al.  Transgenic analysis of the BmBLOS2 gene that governs the translucency of the larval integument of the silkworm, Bombyx mori , 2010, Insect molecular biology.

[24]  Henry C. Chang,et al.  Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency. , 2010, Human molecular genetics.

[25]  T. Shimada,et al.  A 25bp-long insertional mutation in the BmVarp gene causes the waxy translucent skin of the silkworm, Bombyx mori. , 2009, Insect biochemistry and molecular biology.

[26]  H. Sezutsu,et al.  A single-base deletion in an ABC transporter gene causes white eyes, white eggs, and translucent larval skin in the silkworm w-3(oe) mutant. , 2009, Insect biochemistry and molecular biology.

[27]  I. Meinertzhagen,et al.  Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain , 2008, Journal of Experimental Biology.

[28]  S. Davies,et al.  A new role for a classical gene: White transports cyclic GMP , 2008, Journal of Experimental Biology.

[29]  Maria L. Wei Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. , 2006, Pigment cell research.

[30]  G. Nagaraja,et al.  Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori , 2005, Heredity.

[31]  E. C. Dell'Angelica,et al.  The building BLOC(k)s of lysosomes and related organelles. , 2004, Current opinion in cell biology.

[32]  M. C. Sullivan,et al.  Purine transport by Malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster , 1979, Biochemical Genetics.

[33]  G. Cox,et al.  Sub-cellular Localisation of the White/Scarlet ABC Transporter to Pigment Granule Membranes Within the Compound Eye of Drosophila Melanogaster , 2004, Genetica.

[34]  A. M. George,et al.  The ABC transporter structure and mechanism: perspectives on recent research , 2004, Cellular and Molecular Life Sciences CMLS.

[35]  J. Falcón-Pérez,et al.  BLOC-1, a Novel Complex Containing the Pallidin and Muted Proteins Involved in the Biogenesis of Melanosomes and Platelet-dense Granules* , 2002, The Journal of Biological Chemistry.

[36]  T. Tamura,et al.  Induction of the white egg 3 mutant phenotype by injection of the double‐stranded RNA of the silkworm white gene , 2002, Insect molecular biology.

[37]  T. Shimada,et al.  Identification and characterisation of a silkworm ABC transporter gene homologous to Drosophila white , 2000, Molecular and General Genetics MGG.

[38]  J. Bonifacino,et al.  Lysosome‐related organelles , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  A. Bacher,et al.  Biosynthesis of vitamin b2 (riboflavin). , 2000, Annual review of nutrition.

[40]  G. Cox,et al.  Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. , 1999, Biochimica et biophysica acta.

[41]  A J Howells,et al.  ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster. , 1998, Methods in enzymology.

[42]  Masatoshi Nakamura,et al.  Homeostasis of vitamin B2 and role of the Malpighian tubes in the silkworm, Bombyx mori , 1992 .

[43]  R. Tearle Tissue specific effects of ommochrome pathway mutations in Drosophila melanogaster. , 1991, Genetical research.

[44]  S. Henikoff,et al.  The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes , 1988, Molecular and cellular biology.

[45]  K. Summers,et al.  Biology of Eye Pigmentation in Insects , 1982 .

[46]  H. Nickla Interaction between pteridine synthesis and riboflavin accumulation in Drosophila melanogaster. , 1972, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie.

[47]  R. Ishihara Studies on the Malpighian tubules of the silkworm, Bombyx mori L. , 1958 .

[48]  Y. Tazima,et al.  On the sex discriminating method by coloring .genes of silkwdrm eggs. 1. Induction of translocation between the W and the tenth chromosomes. , 1951 .

[49]  G. Beadle Development of Eye Colors in Drosophila: Fat Bodies and Malpighian Tubes in Relation to Diffusible Substances. , 1937, Genetics.