p38γ/δ activation alters cardiac electrical activity and predisposes to ventricular arrhythmia

[1]  J. López,et al.  iSanXoT: a Standalone Application for the Integrative Analysis of Mass Spectrometry-Based Quantitative Proteomics Data , 2023, bioRxiv.

[2]  Jared L. Johnson,et al.  An atlas of substrate specificities for the human serine/threonine kinome , 2023, Nature.

[3]  J. Jalife,et al.  MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation , 2021, bioRxiv.

[4]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[5]  J. Enríquez,et al.  p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1 , 2021, PLoS biology.

[6]  A. Wilde,et al.  Human RyR2 (Ryanodine Receptor 2) Loss-of-Function Mutations , 2021, Circulation. Arrhythmia and electrophysiology.

[7]  R. Passman,et al.  Trends in Cardiovascular Mortality Related to Atrial Fibrillation in the United States, 2011 to 2018 , 2021, Journal of the American Heart Association.

[8]  A. Nebreda,et al.  Diversity and versatility of p38 kinase signalling in health and disease , 2021, Nature Reviews Molecular Cell Biology.

[9]  G. Sabio,et al.  The role of stress kinases in metabolic disease , 2020, Nature Reviews Endocrinology.

[10]  G. Sabio,et al.  p38 MAPK Pathway in the Heart: New Insights in Health and Disease , 2020, International journal of molecular sciences.

[11]  L. Sciarra,et al.  Sudden Cardiac Death in Patients with Ventricular Preexcitation. , 2020, Cardiac electrophysiology clinics.

[12]  F. Atienza,et al.  The p.P888L SAP97 polymorphism increases the transient outward current (Ito,f) and abbreviates the action potential duration and the QT interval , 2020, Scientific Reports.

[13]  A. Heck,et al.  Loss of SPEG Inhibitory Phosphorylation of Ryanodine Receptor Type-2 Promotes Atrial Fibrillation , 2020, Circulation.

[14]  P. Schwartz,et al.  Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. , 2020, American journal of physiology. Heart and circulatory physiology.

[15]  Nadezhda T. Doncheva,et al.  Visualize omics data on networks with Omics Visualizer, a Cytoscape App , 2020, F1000Research.

[16]  N. Marrouche,et al.  Atrial fibrillation and cardiac fibrosis. , 2019, European heart journal.

[17]  Jan Gorodkin,et al.  Cytoscape stringApp: Network analysis and visualization of proteomics data , 2018, bioRxiv.

[18]  E. Prystowsky,et al.  Arrhythmia induction using isoproterenol or epinephrine during electrophysiology study for supraventricular tachycardia , 2018, Journal of cardiovascular electrophysiology.

[19]  Jose Manuel Rodriguez,et al.  SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments , 2018, Bioinform..

[20]  Spiros Michalakopoulos,et al.  Comprehensive quantification of the modified proteome reveals oxidative heart damage in mitochondrial heteroplasmy , 2018, bioRxiv.

[21]  D. Bers,et al.  Stress Signaling JNK2 Crosstalk With CaMKII Underlies Enhanced Atrial Arrhythmogenesis , 2018, Circulation research.

[22]  R. Schilling,et al.  Sudden Cardiac Death and Arrhythmias. , 2018, Arrhythmia & electrophysiology review.

[23]  J. Enríquez,et al.  MKK6 controls T3-mediated browning of white adipose tissue , 2017, Nature Communications.

[24]  Dobromir Dobrev,et al.  Calcium Signaling and Cardiac Arrhythmias. , 2017, Circulation research.

[25]  C. Shanahan,et al.  Current insights into LMNA cardiomyopathies: Existing models and missing LINCs , 2017, Nucleus.

[26]  C. López-Otín,et al.  Cardiac electrical defects in progeroid mice and Hutchinson–Gilford progeria syndrome patients with nuclear lamina alterations , 2016, Proceedings of the National Academy of Sciences.

[27]  G. Tse,et al.  Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models , 2016, International journal of cardiology. Heart & vasculature.

[28]  R. Huganir,et al.  Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold , 2016, PLoS biology.

[29]  J. Redondo,et al.  A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics* , 2016, Molecular & Cellular Proteomics.

[30]  V. Kärjä,et al.  Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and lentivirus vectors in the mouse heart , 2015, Gene Therapy.

[31]  J. Redondo,et al.  p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation , 2015, Nature Communications.

[32]  R. Flavell,et al.  Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart , 2015, PloS one.

[33]  J. Jalife,et al.  Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function , 2015, Proceedings of the National Academy of Sciences.

[34]  E. Bonzón-Kulichenko,et al.  Revisiting peptide identification by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows. , 2015, Journal of proteome research.

[35]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[36]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[37]  H. Karagueuzian,et al.  Cardiac fibrosis as a determinant of ventricular tachyarrhythmias , 2014, Journal of arrhythmia.

[38]  Ludovic C. Gillet,et al.  Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. , 2014, Heart rhythm.

[39]  Steven R Houser,et al.  Role of RyR2 Phosphorylation in Heart Failure and Arrhythmias: Protein Kinase A–Mediated Hyperphosphorylation of the Ryanodine Receptor at Serine 2808 Does Not Alter Cardiac Contractility or Cause Heart Failure and Arrhythmias , 2014, Circulation research.

[40]  Jeanne M Nerbonne,et al.  Mouse models of arrhythmogenic cardiovascular disease: challenges and opportunities. , 2014, Current opinion in pharmacology.

[41]  Concha Gil,et al.  General statistical framework for quantitative proteomics by stable isotope labeling. , 2014, Journal of proteome research.

[42]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[43]  K. Boheler,et al.  Mitogen-Activated Protein Kinase-Activated Protein Kinases 2 and 3 Regulate SERCA2a Expression and Fiber Type Composition To Modulate Skeletal Muscle and Cardiomyocyte Function , 2013, Molecular and Cellular Biology.

[44]  J. Jalife,et al.  Rotors and the Dynamics of Cardiac Fibrillation , 2013, Circulation research.

[45]  V. Fast,et al.  c-Jun N-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias. , 2013, Cardiovascular Research.

[46]  Sean P. Palecek,et al.  Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions , 2012, Nature Protocols.

[47]  W. Shen,et al.  Mechanisms of arrhythmias and conduction disorders in older adults. , 2012, Clinics in geriatric medicine.

[48]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[49]  M. Lancaster,et al.  Aging is a primary risk factor for cardiac arrhythmias: disruption of intracellular Ca2+ regulation as a key suspect , 2011, Expert review of cardiovascular therapy.

[50]  Junfa Li,et al.  Age-induced augmentation of p38 MAPK phosphorylation in mouse lung , 2011, Experimental Gerontology.

[51]  X. Wehrens,et al.  Targeting ryanodine receptors for anti-arrhythmic therapy , 2011, Acta Pharmacologica Sinica.

[52]  J. Weiss,et al.  Glycolytic inhibition causes spontaneous ventricular fibrillation in aged hearts. , 2011, American journal of physiology. Heart and circulatory physiology.

[53]  Silvia G Priori,et al.  Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. , 2011, Circulation research.

[54]  Lai-Hua Xie,et al.  Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents? , 2011, American journal of physiology. Heart and circulatory physiology.

[55]  B. Gersh,et al.  Sudden cardiac death: epidemiology and risk factors , 2010, Nature Reviews Cardiology.

[56]  U. Schotten,et al.  Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. , 2009, The Journal of clinical investigation.

[57]  A. Jeromin,et al.  Kv4 Potassium Channels Form a Tripartite Complex With the Anchoring Protein SAP97 and CaMKII in Cardiac Myocytes , 2009, Circulation research.

[58]  Pedro Navarro,et al.  A refined method to calculate false discovery rates for peptide identification using decoy databases. , 2009, Journal of proteome research.

[59]  Claudia C. Preston,et al.  Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart , 2008, Mechanisms of Ageing and Development.

[60]  M. Villar,et al.  Properties of Average Score Distributions of SEQUEST , 2008, Molecular & Cellular Proteomics.

[61]  D. Bers Calcium cycling and signaling in cardiac myocytes. , 2008, Annual review of physiology.

[62]  José Jalife,et al.  Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia , 2007, Circulation research.

[63]  José Jalife,et al.  Adenoviral Expression of IKs Contributes to Wavebreak and Fibrillatory Conduction in Neonatal Rat Ventricular Cardiomyocyte Monolayers , 2007, Circulation research.

[64]  D. Vučković,et al.  Familial Hypertrophic Cardiomyopathy , 2007, Herz Kardiovaskuläre Erkrankungen.

[65]  José Jalife,et al.  Up‐regulation of the inward rectifier K+ current (IK1) in the mouse heart accelerates and stabilizes rotors , 2007, The Journal of physiology.

[66]  J. Ornato,et al.  ACC/AHA/ESC PRACTICE GUIDELINES ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death , 2006 .

[67]  J. Ninomiya-Tsuji,et al.  AMP-Activated Protein Kinase Activates p38 Mitogen-Activated Protein Kinase by Increasing Recruitment of p38 MAPK to TAB1 in the Ischemic Heart , 2005, Circulation research.

[68]  M. Goedert,et al.  p38γ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP , 2005, The EMBO journal.

[69]  M. Eimre,et al.  Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery , 2005, Molecular and Cellular Biochemistry.

[70]  Heping Cheng,et al.  RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. Ross,et al.  Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. , 2004, Cardiovascular research.

[72]  J. Mounsey,et al.  Antiarrhythmic drug therapy of atrial fibrillation. , 2004, Cardiology clinics.

[73]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[74]  Nobuyuki Tanaka,et al.  Mechanism of p38 MAP kinase activation in vivo. , 2003, Genes & development.

[75]  Guy Salama,et al.  Cytosolic Ca2+ triggers early afterdepolarizations and torsade de pointes in rabbit hearts with type 2 long QT syndrome , 2002, The Journal of physiology.

[76]  HideoMitamura,et al.  Anisotropic Conduction Properties in Canine Atria Analyzed by High-Resolution Optical Mapping , 2002 .

[77]  J Jalife,et al.  Rectification of the Background Potassium Current: A Determinant of Rotor Dynamics in Ventricular Fibrillation , 2001, Circulation research.

[78]  J. Seidman,et al.  Ventricular Arrhythmia Vulnerability in Cardiomyopathic Mice With Homozygous Mutant Myosin-Binding Protein C Gene , 2001, Circulation.

[79]  H. Huikuri,et al.  Sudden death due to cardiac arrhythmias. , 2001, The New England journal of medicine.

[80]  J Jalife,et al.  Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. , 2000, Circulation research.

[81]  J. Nerbonne,et al.  Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. , 1998, Circulation research.

[82]  G. Fishman,et al.  The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. , 1998, Cardiovascular research.

[83]  K. Isaaz,et al.  Inducible multiform ventricular tachycardia in Wolff-Parkinson-White syndrome. , 1987, British heart journal.

[84]  L A SMITH,et al.  Post-test , 1950, Facial Plastic Surgery.

[85]  L. Miyamoto Molecular Pathogenesis of Familial Wolff-Parkinson-White Syndrome. , 2018, The journal of medical investigation : JMI.

[86]  V. Fast,et al.  The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. , 2018, Journal of molecular and cellular cardiology.

[87]  A. Vicente,et al.  Cardiovascular , 2008, Laboratory Investigation.

[88]  Heping Cheng,et al.  RyR 2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca 2 release ( SOICR ) , 2004 .

[89]  W. Hauswirth,et al.  Production and purification of recombinant adeno-associated virus. , 2000, Methods in enzymology.

[90]  JoVE Video Dataset , 2022 .