Dynamic stiffness of randomly parametered beams

A finite element-based methodology is developed for the determination of the dynamic stiffness matrix of Euler-Bernoulli beams with randomly varying flexural and axial rigidity, mass density and foundation elastic modulus. The finite element approximation made employs frequency dependent shape functions and the analysis avoids eigenfunction expansion which, not only eliminates modal truncation errors, but also, restricts the number of random variables entering the formulations. Application of the proposed method is illustrated by considering two problems of wide interest in engineering mechanics, namely, vibration of beams on random elastic foundation and the problem of seismic wave amplification through randomly inhomogeneous soil layers. Satisfactory agreement between analytical solutions and a limited amount of digital simulation results is also demonstrated.

[1]  C. E. Brenner,et al.  Stochastic response of uncertain systems , 1992, Archive of Applied Mechanics.

[2]  James F. Doyle,et al.  Wave Propagation in Structures , 1989 .

[3]  C. S. Manohar,et al.  Dynamic stiffness matrix of a general cable element , 1996 .

[4]  C. S. Manohar,et al.  Free Vibration Analysis Of Stochastic Strings , 1994 .

[5]  C. S. Manohar,et al.  Harmonic Response Analysis of Stochastic Rods Using Spatial Stochastic Averaging , 1996 .

[6]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[7]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[8]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[9]  Gerhart I. Schuëller,et al.  Stochastic Structural Dynamics: Progress in Theory and Applications , 1988 .

[10]  F. W. Williams,et al.  Exact dynamic member stiffnesses for a beam on an elastic foundation , 1987 .

[11]  Hector A. Jensen,et al.  On the Dynamic Response of Continuous Systems Including Model Uncertainty , 1993 .

[12]  J. R. Banerjee,et al.  Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element , 1994 .

[13]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[14]  Robert J. Hansen,et al.  Seismic design for nuclear power plants , 1970 .

[15]  M. Shinozuka,et al.  Structural Response Variability III , 1987 .

[16]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[17]  Tsuyoshi Takada,et al.  Weighted integral method in stochastic finite element analysis , 1990 .

[18]  Robin S. Langley,et al.  Analysis of power flow in beams and frameworks using the direct-dynamic stiffness method , 1990 .

[19]  Walter D. Pilkey,et al.  Literature review of variants of the dynamic stiffness method. II: Frequency-dependent matrix and other corrective methods , 1993 .

[20]  Y. J. Ren,et al.  Stochastic FEM based on local averages of random vector fields , 1992 .

[21]  A. Der Kiureghian,et al.  Recent Developments in Stochastic Finite Elements , 1992 .

[22]  George Deodatis,et al.  Weighted Integral Method. I: Stochastic Stiffness Matrix , 1991 .

[23]  Tsuyoshi Takada,et al.  Weighted integral method in multi-dimensional stochastic finite element analysis , 1990 .

[24]  M. A. Lawrence,et al.  Basis random variables in finite element analysis , 1987 .

[25]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[26]  Haym Benaroya,et al.  Finite Element Methods in Probabilistic Structural Analysis: A Selective Review , 1988 .