On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation

In Speakman and Lee (Math Oper Res 42(4):1230–1253, 2017), we analytically developed the idea of using volume as a measure for comparing relaxations in the context of spatial branch-and-bound. Specifically, for trilinear monomials, we analytically compared the three possible “double-McCormick relaxations” with the tight convex-hull relaxation. Here, again using volume as a measure, for the convex-hull relaxation of trilinear monomials, we establish simple rules for determining the optimal branching variable and optimal branching point. Additionally, we compare our results with current software practice.

[1]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[2]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..

[3]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[4]  Hanif D. Sherali,et al.  An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes , 1991 .

[5]  Ross E. Swaney,et al.  Global optimization of nonconvex nonlinear programs using parallel branch and bound , 1995 .

[6]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[7]  Sumit Agarwal,et al.  Branch and Bound Algorithm with Implementation of ooOPS , 2012 .

[8]  Robert Weismantel,et al.  The Convex Envelope of (n--1)-Convex Functions , 2008, SIAM J. Optim..

[9]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[10]  A. H. Land,et al.  A Problem of Assignment with Inter-Related Costs , 1963 .

[11]  Jon Lee,et al.  Mixed-integer nonlinear programming: Some modeling and solution issues , 2007, IBM J. Res. Dev..

[12]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[13]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[14]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes , 2004 .

[15]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[16]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[17]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[18]  Jon Lee,et al.  Quantifying Double McCormick , 2017, Math. Oper. Res..

[19]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[20]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[21]  Ross E. Swaney,et al.  Branch and Bound for Global NLP: Iterative LP Algorithm & Results , 1996 .

[22]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[23]  Han Yu,et al.  Experimental Validation of Volume-Based Comparison for Double-McCormick Relaxations , 2017, CPAIOR.

[24]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[25]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[26]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[27]  Emily Speakman,et al.  Volumetric Guidance for Handling Triple Products in Spatial Branch-and-Bound , 2017 .