We study a problem of sequential frame detection in an asynchronous framework, where a single frame of length <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> slots is transmitted uniformly in a large interval of known size <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> slots. In this setup, we seek to characterize the scaling needed of <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> and the channel (input) parameters for asynchronous optimal frame synchronization. We note that the framework permits a natural trade-off between <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> is the synchronization threshold of the channel (usually parameterized by the channel input). We present a general framework that permits this trade-off and then characterize the scaling needed of both <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> as a function of the asynchronism period <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula>. Finally, we apply our results to the AWGN channel as an illustration.
[1]
David Tse,et al.
Asynchronous Capacity per Unit Cost
,
2010,
IEEE Transactions on Information Theory.
[2]
Gregory W. Wornell,et al.
Optimal Sequential Frame Synchronization
,
2007,
IEEE Transactions on Information Theory.
[3]
H. Meyr,et al.
Optimum frame synchronization for asynchronous packet transmission
,
1993,
Proceedings of ICC '93 - IEEE International Conference on Communications.
[4]
C.E. Shannon,et al.
Communication in the Presence of Noise
,
1949,
Proceedings of the IRE.
[5]
Thomas M. Cover,et al.
Elements of Information Theory
,
2005
.
[6]
Sergio Verdú,et al.
On channel capacity per unit cost
,
1990,
IEEE Trans. Inf. Theory.
[7]
Imre Csiszár,et al.
Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition
,
2011
.
[8]
Marco Chiani,et al.
On sequential frame synchronization in AWGN channels
,
2006,
IEEE Transactions on Communications.
[9]
J. Massey,et al.
Optimum Frame Synchronization
,
1972,
IEEE Trans. Commun..