Clustering of High-Redshift (z ≥ 2.9) Quasars from the Sloan Digital Sky Survey

We study the two-point correlation function of a uniformly selected sample of 4426 luminous optical quasars with redshift 2.9 ≤ z ≤ 5.4 selected over 4041 deg2 from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function wp(rp) to marginalize over redshift-space distortions and redshift errors. For a real-space correlation function of the form ξ(r) = (r/r0)-γ, the fitted parameters in comoving coordinates are r0 = 15.2 ± 2.7 h-1 Mpc and γ = 2.0 ± 0.3, over a scale range 4 h-1 Mpc ≤ rp ≤ 150 h-1 Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z ≈ 1.5 counterparts, which have a comoving clustering length r0 ≈ 6.5 h-1 Mpc. Dividing our sample into two redshift bins, 2.9 ≤ z ≤ 3.5 and z ≥ 3.5, and assuming a power-law index γ = 2.0, we find a correlation length of r0 = 16.9 ± 1.7 h-1 Mpc for the former and r0 = 24.3 ± 2.4 h-1 Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range ∼4-50 Myr for quasars with 2.9 ≤ z ≤ 3.5, and ∼30-600 Myr for quasars with z ≥ 3.5. The corresponding duty cycles are ∼0.004-0.05 for the lower redshift bin and ∼0.03-0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is (2-3) × 1012 h-1 M⊙ for quasars with 2.9 ≤ z ≤ 3.5 and (4-6) × 1012 h-1 M⊙ for quasars with z ≥ 3.5; the effective bias factor beff increases with redshift, e.g., beff ∼ 8 at z = 3.0 and beff ∼ 16 at z = 4.5.

[1]  Alexander S. Szalay,et al.  The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .

[2]  E. Gawiser,et al.  Clustering of K-selected Galaxies at 2 < z < 3.5: Evidence for a Color-Density Relation , 2006, astro-ph/0606330.

[3]  A. Myers,et al.  Clustering Analyses of 300,000 Photometrically Classified Quasars. II. The Excess on Very Small Scales , 2006, astro-ph/0612191.

[4]  A. Myers,et al.  Clustering Analyses of 300,000 Photometrically Classified Quasars. I. Luminosity and Redshift Evolution in Quasar Bias , 2006, astro-ph/0612190.

[5]  Yue Shen,et al.  Differences in the AGN Populations of Groups and Clusters: Clues to AGN Evolution , 2006, astro-ph/0611635.

[6]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[7]  R. Nichol,et al.  The shape of the SDSS DR5 galaxy power spectrum , 2006, astro-ph/0608636.

[8]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[9]  P. Norberg,et al.  Luminosity‐ and redshift‐dependent quasar clustering , 2006, astro-ph/0607348.

[10]  G. Zamorani,et al.  The XMM-Newton survey of the ELAIS-S1 field. I. Number counts, angular correlation function and X-ra , 2006, astro-ph/0607107.

[11]  Robert J. Brunner,et al.  Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.

[12]  T. Nagao,et al.  New Corroborative Evidence for the Overdensity of Galaxies around the Radio-Loud Quasar SDSS J0836+0054 at z = 5.8 , 2006, astro-ph/0603298.

[13]  J. Brinkmann,et al.  A Spectroscopic Survey of Faint Quasars in the SDSS Deep Stripe. I. Preliminary Results from the Co-added Catalog , 2006, astro-ph/0602569.

[14]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[15]  G. Richards,et al.  The Small-Scale Environment of Quasars , 2006, astro-ph/0601522.

[16]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[17]  P. Ricker,et al.  Capturing Halos at High Redshifts , 2006, astro-ph/0601233.

[18]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[19]  A. Loeb,et al.  Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts , 2005, astro-ph/0509784.

[20]  S. Okamura,et al.  Clustering of Lyman Break Galaxies at z = 4 and 5 in the Subaru Deep Field: Luminosity Dependence of the Correlation Function Slope , 2005, astro-ph/0509564.

[21]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[22]  J. Brinkmann,et al.  Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales , 2005, astro-ph/0504535.

[23]  B. Garilli,et al.  The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5 , 2005 .

[24]  H. Ferguson,et al.  The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ⩽ z ⩽ 5.5 from the GOODS Survey , 2005, astro-ph/0508090.

[25]  K. Shimasaku,et al.  Definitive Identification of the Transition between Small- and Large-Scale Clustering for Lyman Break Galaxies , 2005, astro-ph/0508083.

[26]  P. Hopkins,et al.  The Luminosity Dependence of Quasar Clustering , 2005, astro-ph/0507361.

[27]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[28]  C. Heymans,et al.  The Oxford-Dartmouth Thirty Degree Survey - II. Clustering of bright Lyman break galaxies: strong lu , 2005, astro-ph/0505015.

[29]  A. Myers,et al.  Detection of Cosmic Magnification with the Sloan Digital Sky Survey , 2005, astro-ph/0504510.

[30]  Mullard Space Science Laboratory,et al.  The 2dF QSO Redshift Survey– XV. Correlation analysis of redshift‐space distortions , 2005, astro-ph/0504438.

[31]  T. D. Matteo,et al.  A Physical Model for the Origin of Quasar Lifetimes , 2005, astro-ph/0502241.

[32]  S. Djorgovski,et al.  Evidence of Primordial Clustering around the QSO SDSS J1030+0524 at z = 6.28 , 2005, astro-ph/0502223.

[33]  C. Steidel,et al.  Strong Spatial Clustering of Ultraviolet-selected Galaxies with Magnitude Ks < 20.5 and Redshift z ~ 2 , 2005, astro-ph/0501354.

[34]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[35]  G. Zamorani,et al.  The spatial clustering of X-ray selected AGN and galaxies in the Chandra Deep Field South and North , 2004, astro-ph/0409759.

[36]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[37]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[38]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[39]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[40]  Porto,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.

[41]  A. Barger Supermassive Black Holes in the Distant Universe , 2004 .

[42]  M. Magliocchetti,et al.  Cosmic evolution of quasar clustering: implications for the host haloes , 2004, astro-ph/0406036.

[43]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[44]  R. Mushotzky How are AGN Found , 2004, astro-ph/0405144.

[45]  A. Georgakakis,et al.  The Clustering of XMM-Newton Hard X-Ray Sources , 2004, astro-ph/0404185.

[46]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[47]  Max Tegmark,et al.  A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys , 2003, astro-ph/0306324.

[48]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[49]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[50]  S. Djorgovski,et al.  Discovery of a Clustered Quasar Pair at z ≈ 5: Biased Peaks in Early Structure Formation , 2003, astro-ph/0306423.

[51]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[52]  G. Stinson,et al.  A Large, Uniform Sample of X-Ray-emitting AGNs: Selection Approach and an Initial Catalog from the ROSAT All-Sky and Sloan Digital Sky Surveys , 2003, astro-ph/0305093.

[53]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[54]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[55]  J. Ostriker,et al.  Tree Particle-Mesh: An Adaptive, Efficient, and Parallel Code for Collisionless Cosmological Simulation , 2003, astro-ph/0302065.

[56]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[57]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[58]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[59]  Lars Hernquist,et al.  Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.

[60]  Mark SubbaRao,et al.  The Sloan Digital Sky Survey 1-Dimensional Spectroscopic Pipeline , 2002, SPIE Astronomical Telescopes + Instrumentation.

[61]  M. SubbaRao,et al.  Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.

[62]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[63]  L. Ferrarese Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos , 2002, astro-ph/0203469.

[64]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[65]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[66]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[67]  V. Narayanan,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[68]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[69]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[70]  G. Mamon,et al.  The Cosmological Constant and Quintessence from a Correlation Function Comoving Fine Feature in the 2dF Quasar Redshift Survey , 2001, astro-ph/0106135.

[71]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[72]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[73]  Paul MartiniDavid H. Weinberg Quasar Clustering and the Lifetime of Quasars , 2001 .

[74]  Z. Haiman,et al.  Constraining the Lifetime of Quasars from Their Spatial Clustering , 2000, astro-ph/0002190.

[75]  Neta A. Bahcall,et al.  Discovery of a Pair of z = 4.25 Quasars from the Sloan Digital Sky Survey , 2000, astro-ph/0008401.

[76]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[77]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[78]  M. Blanton,et al.  Time Evolution of Galaxy Formation and Bias in Cosmological Simulations , 1999, astro-ph/9903165.

[79]  Guohong Xu,et al.  The Tree Particle-Mesh N-Body Gravity Solver , 1999, astro-ph/9912541.

[80]  Xiaohui Fan,et al.  Simulation of Stellar Objects in SDSS Color Space , 1999, astro-ph/9902063.

[81]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[82]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[83]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[84]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[85]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[86]  Hubble Fellow,et al.  The Time Evolution of Bias , 1998, astro-ph/9804067.

[87]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[88]  S. Cristiani,et al.  Quasar Clustering: Evidence for an Increase with Redshift and Implications for the Nature of Active Galactic Nuclei , 1997, astro-ph/9711048.

[89]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[90]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[91]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[92]  J. Gunn,et al.  A Study of Quasar Clustering at z>2.7 From the Palomar Transit GRISM Survey , 1997, astro-ph/9708241.

[93]  T. Kundić The Quasar-Quasar Correlation Function in the Palomar Transit Grism Survey , 1997 .

[94]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[95]  D. Hogg,et al.  Redshift Clustering in the Hubble Deep Field , 1996, astro-ph/9608121.

[96]  S. Croom,et al.  QSO clustering - III. Clustering in the Large Bright Quasar Survey and evolution of the QSO correlation function , 1996 .

[97]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[98]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[99]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[100]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[101]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[102]  D. Tytler,et al.  Systematic QSO Emission-Line Velocity Shifts and New Unbiased Redshifts , 1992 .

[103]  Simon L. Morris,et al.  Comparisons of the Emission-Line and Continuum Properties of Broad Absorption Line and Normal Quasi-stellar Objects , 1991 .

[104]  A. Iovino,et al.  The Clustering of Quasars , 1988 .

[105]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[106]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[107]  N. Kaiser A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys , 1986 .

[108]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[109]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[110]  C. Gaskell Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .

[111]  P. Osmer The three-dimensional distribution of quasars in the CTIO surveys , 1981 .

[112]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[113]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[114]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.

[115]  Edwin E. Salpeter,et al.  Accretion of Interstellar Matter by Massive Objects. , 1964 .