Clustering of High-Redshift (z ≥ 2.9) Quasars from the Sloan Digital Sky Survey
暂无分享,去创建一个
A. Szalay | A. Connolly | D. Berk | G. Richards | P. Hall | D. Schneider | S. Anderson | Xiaohui Fan | J. Gunn | Yue Shen | M. Strauss | A. Thakar | G. Knapp | M. Oguri | N. Bahcall | J. Hennawi | X. Fan | M. Strauss | D. Schneider | D. V. vanden Berk | S. Anderson | D. Schneider | P. Hall | D. Schneider
[1] Alexander S. Szalay,et al. The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .
[2] E. Gawiser,et al. Clustering of K-selected Galaxies at 2 < z < 3.5: Evidence for a Color-Density Relation , 2006, astro-ph/0606330.
[3] A. Myers,et al. Clustering Analyses of 300,000 Photometrically Classified Quasars. II. The Excess on Very Small Scales , 2006, astro-ph/0612191.
[4] A. Myers,et al. Clustering Analyses of 300,000 Photometrically Classified Quasars. I. Luminosity and Redshift Evolution in Quasar Bias , 2006, astro-ph/0612190.
[5] Yue Shen,et al. Differences in the AGN Populations of Groups and Clusters: Clues to AGN Evolution , 2006, astro-ph/0611635.
[6] R. Nichol,et al. Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.
[7] R. Nichol,et al. The shape of the SDSS DR5 galaxy power spectrum , 2006, astro-ph/0608636.
[8] Jr.,et al. The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.
[9] P. Norberg,et al. Luminosity‐ and redshift‐dependent quasar clustering , 2006, astro-ph/0607348.
[10] G. Zamorani,et al. The XMM-Newton survey of the ELAIS-S1 field. I. Number counts, angular correlation function and X-ra , 2006, astro-ph/0607107.
[11] Robert J. Brunner,et al. Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars , 2006, astro-ph/0603742.
[12] T. Nagao,et al. New Corroborative Evidence for the Overdensity of Galaxies around the Radio-Loud Quasar SDSS J0836+0054 at z = 5.8 , 2006, astro-ph/0603298.
[13] J. Brinkmann,et al. A Spectroscopic Survey of Faint Quasars in the SDSS Deep Stripe. I. Preliminary Results from the Co-added Catalog , 2006, astro-ph/0602569.
[14] Walter A. Siegmund,et al. The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.
[15] G. Richards,et al. The Small-Scale Environment of Quasars , 2006, astro-ph/0601522.
[16] A. Szalay,et al. The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.
[17] P. Ricker,et al. Capturing Halos at High Redshifts , 2006, astro-ph/0601233.
[18] Alexander G. Gray,et al. First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.
[19] A. Loeb,et al. Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts , 2005, astro-ph/0509784.
[20] S. Okamura,et al. Clustering of Lyman Break Galaxies at z = 4 and 5 in the Subaru Deep Field: Luminosity Dependence of the Correlation Function Slope , 2005, astro-ph/0509564.
[21] Arjun Dey,et al. Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.
[22] J. Brinkmann,et al. Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales , 2005, astro-ph/0504535.
[23] B. Garilli,et al. The VIMOS-VLT Deep Survey - The evolution of galaxy clustering per spectral type to z~1.5 , 2005 .
[24] H. Ferguson,et al. The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ⩽ z ⩽ 5.5 from the GOODS Survey , 2005, astro-ph/0508090.
[25] K. Shimasaku,et al. Definitive Identification of the Transition between Small- and Large-Scale Clustering for Lyman Break Galaxies , 2005, astro-ph/0508083.
[26] P. Hopkins,et al. The Luminosity Dependence of Quasar Clustering , 2005, astro-ph/0507361.
[27] J. Brinkmann,et al. New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .
[28] C. Heymans,et al. The Oxford-Dartmouth Thirty Degree Survey - II. Clustering of bright Lyman break galaxies: strong lu , 2005, astro-ph/0505015.
[29] A. Myers,et al. Detection of Cosmic Magnification with the Sloan Digital Sky Survey , 2005, astro-ph/0504510.
[30] Mullard Space Science Laboratory,et al. The 2dF QSO Redshift Survey– XV. Correlation analysis of redshift‐space distortions , 2005, astro-ph/0504438.
[31] T. D. Matteo,et al. A Physical Model for the Origin of Quasar Lifetimes , 2005, astro-ph/0502241.
[32] S. Djorgovski,et al. Evidence of Primordial Clustering around the QSO SDSS J1030+0524 at z = 6.28 , 2005, astro-ph/0502223.
[33] C. Steidel,et al. Strong Spatial Clustering of Ultraviolet-selected Galaxies with Magnitude Ks < 20.5 and Redshift z ~ 2 , 2005, astro-ph/0501354.
[34] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[35] G. Zamorani,et al. The spatial clustering of X-ray selected AGN and galaxies in the Chandra Deep Field South and North , 2004, astro-ph/0409759.
[36] J. Frieman,et al. The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.
[37] M. Pettini,et al. The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.
[38] J. Brinkmann,et al. NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.
[39] A. Szalay,et al. SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.
[40] Porto,et al. The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.
[41] A. Barger. Supermassive Black Holes in the Distant Universe , 2004 .
[42] M. Magliocchetti,et al. Cosmic evolution of quasar clustering: implications for the host haloes , 2004, astro-ph/0406036.
[43] R. Nichol,et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.
[44] R. Mushotzky. How are AGN Found , 2004, astro-ph/0405144.
[45] A. Georgakakis,et al. The Clustering of XMM-Newton Hard X-Ray Sources , 2004, astro-ph/0404185.
[46] Oxford,et al. The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.
[47] Max Tegmark,et al. A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys , 2003, astro-ph/0306324.
[48] P. Martini,et al. Coevolution of Black Holes and Galaxies , 2004 .
[49] R. Nichol,et al. The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.
[50] S. Djorgovski,et al. Discovery of a Clustered Quasar Pair at z ≈ 5: Biased Peaks in Early Structure Formation , 2003, astro-ph/0306423.
[51] Bhasker K. Moorthy,et al. The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.
[52] G. Stinson,et al. A Large, Uniform Sample of X-Ray-emitting AGNs: Selection Approach and an Initial Catalog from the ROSAT All-Sky and Sloan Digital Sky Surveys , 2003, astro-ph/0305093.
[53] F. M. Maley,et al. An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.
[54] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.
[55] J. Ostriker,et al. Tree Particle-Mesh: An Adaptive, Efficient, and Parallel Code for Collisionless Cosmological Simulation , 2003, astro-ph/0302065.
[56] R. Nichol,et al. On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.
[57] R. Ellis,et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.
[58] Ž. Ivezić,et al. Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.
[59] Lars Hernquist,et al. Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.
[60] Mark SubbaRao,et al. The Sloan Digital Sky Survey 1-Dimensional Spectroscopic Pipeline , 2002, SPIE Astronomical Telescopes + Instrumentation.
[61] M. SubbaRao,et al. Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.
[62] S. Tremaine,et al. The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.
[63] L. Ferrarese. Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos , 2002, astro-ph/0203469.
[64] S. Tremaine,et al. Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.
[65] M. SubbaRao,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.
[66] John E. Davis,et al. Sloan Digital Sky Survey: Early Data Release , 2002 .
[67] V. Narayanan,et al. A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.
[68] S.Cole,et al. The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.
[69] J. Gunn,et al. A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.
[70] G. Mamon,et al. The Cosmological Constant and Quintessence from a Correlation Function Comoving Fine Feature in the 2dF Quasar Redshift Survey , 2001, astro-ph/0106135.
[71] F. Miller Maley,et al. An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .
[72] E. al.,et al. Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.
[73] Paul MartiniDavid H. Weinberg. Quasar Clustering and the Lifetime of Quasars , 2001 .
[74] Z. Haiman,et al. Constraining the Lifetime of Quasars from Their Spatial Clustering , 2000, astro-ph/0002190.
[75] Neta A. Bahcall,et al. Discovery of a Pair of z = 4.25 Quasars from the Sloan Digital Sky Survey , 2000, astro-ph/0008401.
[76] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[77] H. M. P. Couchman,et al. The mass function of dark matter haloes , 2000, astro-ph/0005260.
[78] M. Blanton,et al. Time Evolution of Galaxy Formation and Bias in Cosmological Simulations , 1999, astro-ph/9903165.
[79] Guohong Xu,et al. The Tree Particle-Mesh N-Body Gravity Solver , 1999, astro-ph/9912541.
[80] Xiaohui Fan,et al. Simulation of Stellar Objects in SDSS Color Space , 1999, astro-ph/9902063.
[81] Ravi K. Sheth Giuseppe Tormen. Large scale bias and the peak background split , 1999, astro-ph/9901122.
[82] et al,et al. The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.
[83] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[84] Y. Jing,et al. Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.
[85] M. Giavalisco,et al. A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.
[86] Hubble Fellow,et al. The Time Evolution of Bias , 1998, astro-ph/9804067.
[87] M. Dickinson,et al. The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.
[88] S. Cristiani,et al. Quasar Clustering: Evidence for an Increase with Redshift and Implications for the Nature of Active Galactic Nuclei , 1997, astro-ph/9711048.
[89] S. Tremaine,et al. The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.
[90] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[91] M. Giavalisco,et al. A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.
[92] J. Gunn,et al. A Study of Quasar Clustering at z>2.7 From the Palomar Transit GRISM Survey , 1997, astro-ph/9708241.
[93] T. Kundić. The Quasar-Quasar Correlation Function in the Palomar Transit Grism Survey , 1997 .
[94] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[95] D. Hogg,et al. Redshift Clustering in the Hubble Deep Field , 1996, astro-ph/9608121.
[96] S. Croom,et al. QSO clustering - III. Clustering in the Large Bright Quasar Survey and evolution of the QSO correlation function , 1996 .
[97] M. Fukugita,et al. The Sloan Digital Sky Survey Photometric System , 1996 .
[98] John Kormendy,et al. Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .
[99] A. Hamilton. Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .
[100] A. Szalay,et al. Bias and variance of angular correlation functions , 1993 .
[101] S. Cole,et al. Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.
[102] D. Tytler,et al. Systematic QSO Emission-Line Velocity Shifts and New Unbiased Redshifts , 1992 .
[103] Simon L. Morris,et al. Comparisons of the Emission-Line and Continuum Properties of Broad Absorption Line and Normal Quasi-stellar Objects , 1991 .
[104] A. Iovino,et al. The Clustering of Quasars , 1988 .
[105] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[106] A. Szalay,et al. The statistics of peaks of Gaussian random fields , 1986 .
[107] N. Kaiser. A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys , 1986 .
[108] N. Kaiser. On the spatial correlations of Abell clusters , 1984 .
[109] Marc Davis,et al. A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .
[110] C. Gaskell. Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .
[111] P. Osmer. The three-dimensional distribution of quasars in the CTIO surveys , 1981 .
[112] Phillip James Edwin Peebles,et al. Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .
[113] William H. Press,et al. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .
[114] D. Lynden-Bell,et al. Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.
[115] Edwin E. Salpeter,et al. Accretion of Interstellar Matter by Massive Objects. , 1964 .