Comparing glass and plastic refractive microlenses fabricated with different technologies

We review the most important fabrication techniques for glass and plastic refractive microlenses and we quantitatively characterize in a systematic way the corresponding state-of-the-art microlenses, which we obtained from selected research groups. For all our measurements we rely on three optical instruments: a non-contact optical profiler, a transmission Mach–Zehnder interferometer and a Twyman–Green interferometer. To conclude, we survey and discuss the different fabrication techniques by comparing the geometrical and optical characteristics of the microlenses, the range of materials in which the lenses can be produced, their potential for low-cost fabrication through mass-replication techniques and their suitability for monolithic integration with other micro-optical components.

[1]  Hugo Thienpont,et al.  Direct writing of microlenses in polycarbonate with excimer laser ablation. , 2003, Applied optics.

[2]  Hugo Thienpont,et al.  Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization , 2002 .

[3]  Donald J. Hayes,et al.  Microjet printing of high-precision microlens array for packaging of fiber optic components , 2002, SPIE OPTO.

[4]  Roel G. Baets,et al.  Laser-ablation-based technique for flexible fabrication of microlenses in polymer materials , 2002, International Symposium on Laser Precision Microfabrication.

[5]  Karl-Heinz Brenner,et al.  Fabrication and testing of planar microlens arrays by ion exchange technique in glass , 2001, Optics + Photonics.

[6]  G. Nemeş,et al.  Complete Spatial Characterization of a Laser Beam by Use of Spherical Optics and a Cylindrical Lens , 2001 .

[7]  S. Esener,et al.  Microlenses self-aligned to optical fibers fabricated using the hydrophobic effect , 2001, IEEE Photonics Technology Letters.

[8]  H. Choi,et al.  Optimisation of microlenses fabricated by deep proton irradiation and styrene diffusion , 2001 .

[9]  Ting Chen,et al.  Micro-Optics Fabrication by Ink-Jet Printers , 2001 .

[10]  G. Khanarian Optical properties of cyclic olefin copolymers , 2001 .

[11]  C. Croutxé-Barghorn,et al.  Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters , 2001 .

[12]  S C Esener,et al.  Characterization of a polymer microlens fabricated by use of the hydrophobic effect. , 2000, Optics letters.

[13]  Donald J. Hayes,et al.  Microjet printing of micro-optical interconnects and sensors , 2000, Photonics West - Optoelectronic Materials and Devices.

[14]  Peter Van Daele,et al.  Microlens fabrication in PMMA with scanning excimer laser ablation techniques , 2000 .

[15]  F. Beinhorn,et al.  Micro-lens arrays generated by UV laser irradiation of doped PMMA , 1999 .

[16]  Y. Komachi,et al.  Microlenses and Microlens Arrays Formed on a Glass Plate by Use of a CO(2) Laser. , 1998, Applied optics.

[17]  P. Wyatt,et al.  Laser-fabricated glass microlens arrays. , 1998, Optics letters.

[18]  P. Nussbaum,et al.  Design, fabrication and testing of microlens arrays for sensors and microsystems , 1997 .

[19]  G. Weimann,et al.  Laser-induced dry etching of integrated InP microlenses , 1997 .

[20]  J N McMullin,et al.  Single-step fabrication of refractive microlens arrays. , 1997, Applied optics.

[21]  Johannes Schwider,et al.  Transferring resist microlenses into silicon by reactive ion etching , 1996 .

[22]  Margaret B. Stern,et al.  Dry etching for coherent refractive microlens arrays , 1994 .

[23]  Margaret B. Stern,et al.  Preshaping photoresist for refractive microlens fabrication , 1994 .

[24]  Paras N. Prasad,et al.  Polymers for Photonics , 1994 .

[25]  S. Sinzinger,et al.  Index-distributed planar microlenses for three-dimensional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates. , 1994, Applied optics.

[26]  D. MacFarlane,et al.  Microjet fabrication of microlens arrays , 1994, IEEE Photonics Technology Letters.

[27]  S. Mihailov,et al.  Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon. , 1993, Applied optics.

[28]  S. Haselbeck,et al.  Microlenses fabricated by melting a photoresist on a base layer , 1993 .

[29]  R. Chivers Stand up, Socrates , 1991 .

[30]  K Hamanaka,et al.  High numerical aperture planar microlens with swelled structure. , 1990, Applied optics.

[31]  M Kufner,et al.  H(+) lithography for 3-D integration of optical circuits. , 1990, Applied optics.

[32]  M. Hutley,et al.  The manufacture of microlenses by melting photoresist , 1990 .

[33]  M. C. Hutley Optical Techniques for the Generation of Microlens Arrays , 1990 .

[34]  G. Connell,et al.  Technique for monolithic fabrication of microlens arrays. , 1988, Applied optics.

[35]  Lloyd R. Harriott,et al.  Micromachining of integrated optical structures , 1986 .

[36]  N. Borrelli,et al.  Photolytic technique for producing microlenses in photosensitive glass. , 1985, Applied optics.

[37]  Kenichi Iga,et al.  Distributed-index planar microlens array prepared from deep electromigration , 1981 .

[38]  Kenichi Iga,et al.  Array of Distributed-Index Planar Micro-Lenses Prepared from Ion Exchange Technique , 1981 .

[39]  A Distributed-Index Planar Micro-Lens Made of Plastics , 1981 .

[40]  D T Moore,et al.  Gradient-index optics: a review. , 1980, Applied optics.