Deep learning based conventional neural network architecture for medical image classification

The enactment of automatic medial image taxonomy using customary methods of machine learning and data mining mostly depend upon option of significant descriptive characteristics obtained from the medical images. Reorganization of those skins obliges domain-specific skillful awareness moreover not a forthright process. Here in this paper we are going to propose a deep learning based cnn’s named as deep cnn architecture. Which is a generic architecture and it accepts input as medical image data and produces the class or type of the decease. And we made comparison with the classical models like svm and elm. RÉSUMÉ. L’adoption d’une taxonomie automatique des images médianes à l’aide des méthodes habituelles d’apprentissage automatique et d’exploration de données dépend principalement de l’option de caractéristiques descriptives significatives obtenues à partir des images médicales. La réorganisation de ces skins nécessite en outre une connaissance approfondie du domaine spécifique, et non un processus direct. Dans cet article, nous allons proposer un CNN’s basée sur l’apprentissage profond appelée architecture profonde de CNN qui est une architecture générique. Elle accepte les entrées en tant que données d'images médicales et produit la classe ou le type de décès. Et nous avons comparé les modèles classiques comme SVM et ELM.

[1]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[2]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[3]  A. Halpern,et al.  Model predicting survival in stage I melanoma based on tumor progression. , 1989, Journal of the National Cancer Institute.

[4]  L. Cleaver Prevalence of a History of Skin Cancer in 2007: Results of an Incidence-Based Model , 2011 .

[5]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  A M Zaitoun,et al.  Quantitative assessment of gastric atrophy using the syntactic structure analysis. , 1998, Journal of clinical pathology.

[7]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[8]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[9]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[10]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Yi Shang,et al.  A Mobile Automated Skin Lesion Classification System , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[12]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  S. Menzies,et al.  Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. , 2003, Archives of dermatology.

[14]  Subscribers Only Application of Gray Prediction and Linear Programming Model in Economic Management , 2017 .

[15]  S. Madronich,et al.  Skin cancer and UV radiation , 1993, Nature.

[16]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[17]  Olaf Hellwich,et al.  Appearance-based necrosis detection using textural features and SVM with discriminative thresholding in histopathological whole slide images , 2015, 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE).

[18]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[19]  Geoffrey E. Hinton What kind of graphical model is the brain? , 2005, IJCAI.

[20]  Riccardo Bono,et al.  Melanoma Computer-Aided Diagnosis , 2004, Clinical Cancer Research.

[21]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[22]  S. Feldman,et al.  Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012. , 2015, JAMA dermatology.

[23]  Ammara Masood,et al.  Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms , 2013, Int. J. Biomed. Imaging.

[24]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[25]  Mark Li-cheng Wu,et al.  Automated virtual microscopy of gastric biopsies , 2006, Cytometry. Part B, Clinical cytometry.

[26]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Akira Saito,et al.  Automated gastric cancer diagnosis on H&E-stained sections; ltraining a classifier on a large scale with multiple instance machine learning , 2013, Medical Imaging.

[28]  Taghi M. Khoshgoftaar,et al.  Deep learning applications and challenges in big data analytics , 2015, Journal of Big Data.

[29]  Olaf Hellwich,et al.  A Multi-resolution Approach for Combining Visual Information using Nuclei Segmentation and Classification in Histopathological Images , 2015, VISAPP.

[30]  Fabio A. González,et al.  Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks , 2014, Medical Imaging.

[31]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[32]  Olaf Hellwich,et al.  Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology , 2016, SPIE Medical Imaging.

[33]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[34]  Li Deng,et al.  Three Classes of Deep Learning Architectures and Their Applications: A Tutorial Survey , 2012 .

[35]  T. Schindewolf,et al.  Classification of melanocytic lesions with color and texture analysis using digital image processing. , 1993, Analytical and quantitative cytology and histology.

[36]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[37]  H. Kittler,et al.  Diagnostic accuracy of dermoscopy. , 2002, The Lancet. Oncology.

[38]  Fatma Sherif,et al.  Skin Lesion Analysis Toward Melanoma Detection Using Deep Learning Techniques , 2019, International Journal of Electronics and Telecommunications.