Heat Transfer in Pebble Beds for Fusion Blankets

AbstractThe design of a fusion reactor blanket based on a bed of lithium-containing ceramic pebbles or a mixture of ceramic and metallic pebbles requires knowledge of the effective thermal conductivity of such beds. Binary mixtures of spheres with the same diameter but different conductivities as well as beds formed by one type of sphere are investigated. The pebbles are made of Al2O3 (diameter = 1, 2, and 4 mm), Li4SiO4 (diameter = 0.5 mm), aluminum (diameter = 2 mm), and steel (diameter = 2 and 4 mm). The experimental apparatus consists of a stainless steel cylinder with a heating rod along the symmetry axis. The pebble bed is contained in the annular space between the two concentric cylinders. Experiments with stagnant and flowing gas are performed.The experimental values of the effective thermal conductivity and the wall heat transfer coefficient are compared with those predicted by correlations available from the literature. On the basis of the present experimental results, modifications of the exist...

[1]  Ernst-Ulrich Schlünder,et al.  Wärmeübergang an bewegte Kugelschüttungen bei kurzfristigem Kontakt , 1971 .

[2]  G. Willhite,et al.  Heat transfer in beds of fine particles (heat transfer perpendicular to flow) , 1962 .

[3]  D. Kunii,et al.  Heat transfer characteristics of porous rocks , 1960 .

[4]  S. Yamazaki,et al.  Some Considerations on Li 2 O Pebble-Type Breeding Blanket Design for Tokamak Fusion Reactors , 1985 .

[5]  P. Zehner,et al.  Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen , 1970 .

[6]  B. Legawiec,et al.  Remarks upon thermokinetic parameters of the one-and two-dimensional mathematical models of heat transfer in a tubular flow apparatus with a packed bed , 1987 .

[7]  Sakae Yagi,et al.  Heat and mass transfer from wall to fluid in packed beds , 1959 .

[8]  R. F. Benenati,et al.  Void fraction distribution in beds of spheres , 1962 .

[9]  D. Kunii,et al.  Studies on heat transfer near wall surface in packed beds , 1960 .

[10]  U. Fischer,et al.  A Helium-Cooled, Poloidal Blanket with Ceramic Breeder and Beryllium Multiplier for the Next European Torus , 1985 .

[11]  A. Ying,et al.  Helium-Cooled Solid Breeder Blanket for ITER , 1989 .

[12]  J. Kubie,et al.  Steady-state conduction in stagnant beds of solid particles , 1987 .

[13]  D. Kunii,et al.  Studies on effective thermal conductivities in packed beds , 1957 .

[14]  G. Froment,et al.  Velocity, temperature and conversion profiles in fixed bed catalytic reactors , 1977 .

[15]  Ryozo Toei,et al.  EFFECTIVE THERMAL CONDUCTIVITY FOR GRAN-ULAR BEDS OF VARIOUS BINARY MIXTURES , 1981 .

[16]  Bruce A. Finlayson,et al.  Heat transfer in packed beds—a reevaluation , 1977 .

[17]  R. Bauer,et al.  Effective Radial Thermal Conductivity of Packings in Gas Flow , 1978 .

[18]  D. Kunii,et al.  Heat-transfer characteristics of packed beds with stagnant fluids , 1965 .

[19]  R. Jeschar Druckverlust in Mehrkornschüttungen aus Kugeln , 1964 .

[20]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[21]  E. Schlünder,et al.  Wärmeübergang in beheizten oder gekühlten Rohren mit Schüttungen aus Kugeln, Zylindern und Raschig‐Ringen , 1973 .

[22]  Evangelos Tsotsas,et al.  Thermal conductivity of packed beds: A review , 1987 .

[23]  V. Gnielinski Wärme‐ und Stoffübertragung in Festbetten , 1980 .

[24]  J. Schuster,et al.  Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method , 1983 .