Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system

The propagation of a probe laser field in a cavity optomechanical system with a Bose-Einstein condensate is studied. The transmission properties of the system are investigated and it is shown that the group velocity of the probe pulse field can be controlled by Rabi frequency of the pump laser field. The effect of the decay rate of the cavity photons on the group velocity is studied and it is demonstrated that for small values of the decay rates, the light propagation switches from subluminal to superluminal just by changing the Rabi frequency of the pump field. Then, the gain-assisted superluminal light propagation due to the cross-Kerr nonlinearity is established in cavity optomechanical system with a Bose-Einstein condensate. Such behavior can not appear in the pump-probe two-level atomic systems in the normal phase. We also find that the amplification is achieved without inversion in the population of the quantum energy levels.Graphical abstract

[1]  R. Lutwak,et al.  Coherent Splitting of Bose-Einstein Condensed Atoms With Optically Induced Bragg Diffraction , 1999 .

[2]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[3]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[4]  Aephraim M. Steinberg,et al.  VI: Tunneling Times and Superluminality , 1997 .

[5]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[6]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[7]  L. J. Wang,et al.  Gain-assisted superluminal light propagation , 2000, Nature.

[8]  J. M. Zhang,et al.  Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate in an optical cavity , 2008, 0811.4337.

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  Bin Chen,et al.  Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate , 2011 .

[11]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[12]  L. J. Wang,et al.  Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity , 2001 .

[13]  Cold atom dynamics in a quantum optical lattice potential. , 2005, Physical review letters.

[14]  Ping Yuan,et al.  Observation of ultraslow light propagation in a ruby crystal at room temperature , 2005, SPIE/COS Photonics Asia.

[15]  Fast Light, Slow Light and Optical Precursors: What Does It All Mean? , 2007 .

[16]  RAYMOND,et al.  TUNNELING TIMES AND SUPERLUMINALITY , 2008 .

[17]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[18]  Light propagation through closed-loop atomic media beyond the multiphoton resonance condition , 2006, quant-ph/0609206.

[19]  Bin Chen,et al.  All-optical transistor based on a cavity optomechanical system with a Bose-Einstein condensate , 2011 .

[20]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[21]  Stephen M. Barnett,et al.  Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities , 2000 .

[22]  M. Lewenstein,et al.  Quantum stability of Mott-insulator states of ultracold atoms in optical resonators , 2007, 0710.3047.

[23]  Bin Chen,et al.  Slow light in a cavity optomechanical system with a Bose-Einstein condensate , 2011 .

[24]  M. H. Naderi,et al.  Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose–Einstein condensate , 2008, 0801.2440.

[25]  M. Mahmoudi,et al.  Absorption free superluminal light propagation in a three-level pump–probe system , 2007, 0711.3428.

[26]  F. Saif,et al.  Tunable Fast and Slow light in a hybrid optomechanical system , 2015, 1501.06062.

[27]  Guoxiang Huang,et al.  Giant Kerr nonlinearity and superluminal and subluminal polaritonic solitons in a Bose-Einstein condensate via superradiant scattering , 2015 .

[28]  S. D. Gupta,et al.  Reciprocity relations for reflected amplitudes. , 2002, Optics letters.

[29]  M. Mahmoudi,et al.  Amplification without inversion, fast light and optical bistability in a duplicated two-level system , 2013, 1310.5204.

[30]  Amplification without inversion in tailored vacua , 2000 .

[31]  M. Mahmoudi,et al.  Phase control of group velocity in a dielectric slab doped with three-level ladder-type atoms , 2011 .

[32]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[33]  Luc Thévenaz,et al.  Slow and fast light in optical fibres , 2008 .

[34]  Sumei Huang,et al.  Superluminal and ultraslow light propagation in optomechanical systems , 2012, 1210.6830.

[35]  Robert W. Boyd,et al.  Superluminal and Slow Light Propagation in a Room-Temperature Solid , 2003, Science.

[36]  A. Vafafard,et al.  Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits , 2015 .

[37]  C. Bowden,et al.  Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  A. Dogariu,et al.  Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium. , 2001, Optics express.