Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system
暂无分享,去创建一个
M. Mahmoudi | S. Hamide Kazemi | S. Ghanbari | M. Mahmoudi | S. Ghanbari | S. H. Kazemi | S. Hamide Kazemi
[1] R. Lutwak,et al. Coherent Splitting of Bose-Einstein Condensed Atoms With Optically Induced Bragg Diffraction , 1999 .
[2] C. Wieman,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.
[3] Cai,et al. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.
[4] Aephraim M. Steinberg,et al. VI: Tunneling Times and Superluminality , 1997 .
[5] K. B. Davis,et al. Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.
[6] A. Leggett,et al. Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .
[7] L. J. Wang,et al. Gain-assisted superluminal light propagation , 2000, Nature.
[8] J. M. Zhang,et al. Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate in an optical cavity , 2008, 0811.4337.
[9] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[10] Bin Chen,et al. Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate , 2011 .
[11] Tobias J. Kippenberg,et al. Optomechanically Induced Transparency , 2010, Science.
[12] L. J. Wang,et al. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity , 2001 .
[13] Cold atom dynamics in a quantum optical lattice potential. , 2005, Physical review letters.
[14] Ping Yuan,et al. Observation of ultraslow light propagation in a ruby crystal at room temperature , 2005, SPIE/COS Photonics Asia.
[15] Fast Light, Slow Light and Optical Precursors: What Does It All Mean? , 2007 .
[16] RAYMOND,et al. TUNNELING TIMES AND SUPERLUMINALITY , 2008 .
[17] F. Brennecke,et al. Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.
[18] Light propagation through closed-loop atomic media beyond the multiphoton resonance condition , 2006, quant-ph/0609206.
[19] Bin Chen,et al. All-optical transistor based on a cavity optomechanical system with a Bose-Einstein condensate , 2011 .
[20] G. S. Agarwal,et al. Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.
[21] Stephen M. Barnett,et al. Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities , 2000 .
[22] M. Lewenstein,et al. Quantum stability of Mott-insulator states of ultracold atoms in optical resonators , 2007, 0710.3047.
[23] Bin Chen,et al. Slow light in a cavity optomechanical system with a Bose-Einstein condensate , 2011 .
[24] M. H. Naderi,et al. Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose–Einstein condensate , 2008, 0801.2440.
[25] M. Mahmoudi,et al. Absorption free superluminal light propagation in a three-level pump–probe system , 2007, 0711.3428.
[26] F. Saif,et al. Tunable Fast and Slow light in a hybrid optomechanical system , 2015, 1501.06062.
[27] Guoxiang Huang,et al. Giant Kerr nonlinearity and superluminal and subluminal polaritonic solitons in a Bose-Einstein condensate via superradiant scattering , 2015 .
[28] S. D. Gupta,et al. Reciprocity relations for reflected amplitudes. , 2002, Optics letters.
[29] M. Mahmoudi,et al. Amplification without inversion, fast light and optical bistability in a duplicated two-level system , 2013, 1310.5204.
[30] Amplification without inversion in tailored vacua , 2000 .
[31] M. Mahmoudi,et al. Phase control of group velocity in a dielectric slab doped with three-level ladder-type atoms , 2011 .
[32] C. Pethick,et al. Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .
[33] Luc Thévenaz,et al. Slow and fast light in optical fibres , 2008 .
[34] Sumei Huang,et al. Superluminal and ultraslow light propagation in optomechanical systems , 2012, 1210.6830.
[35] Robert W. Boyd,et al. Superluminal and Slow Light Propagation in a Room-Temperature Solid , 2003, Science.
[36] A. Vafafard,et al. Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits , 2015 .
[37] C. Bowden,et al. Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[38] A. Dogariu,et al. Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium. , 2001, Optics express.