Tidal deformability and gravitational-wave phase evolution of magnetized compact-star binaries

The evolution of the gravitational-wave phase in the signal produced by inspiralling binaries of compact stars is modified by the nonzero deformability of the two stars. Hence, the measurement of these corrections has the potential of providing important information on the equation of state of nuclear matter. Extensive work has been carried out over the last decade to quantify these corrections, but it has so far been restricted to stars with zero intrinsic magnetic fields. While the corrections introduced by the magnetic tension and magnetic pressure are expected to be subdominant, it is nevertheless useful to determine the precise conditions under which these corrections become important. To address this question, we have carried out a second-order perturbative analysis of the tidal deformability of magnetised compact stars under a variety of magnetic-field strengths and equations of state describing either neutron stars or quark stars. Overall, we find that magnetically induced corrections to the tidal deformability will produce changes in the gravitational-wave phase evolution that are unlikely to be detected for realistic magnetic field i.e., $B\sim 10^{10} - 10^{12}\,{\rm G}$. At the same time, if the magnetic field is unrealistically large, i.e., $B\sim 10^{16}\,{\rm G}$, these corrections would produce a sizeable contribution to the phase evolution, especially for quark stars. In the latter case, the induced phase differences would represent a unique tool to measure the properties of the magnetic fields, providing information that is otherwise hard to quantify.

[1]  E. Poisson Gravitomagnetic Love tensor of a slowly rotating body: Post-Newtonian theory , 2020, Physical Review D.

[2]  M. Bejger,et al.  Tidal Deformations of Hybrid Stars with Sharp Phase Transitions and Elastic Crusts , 2020, The Astrophysical Journal.

[3]  E. Poisson Gravitomagnetic tidal resonance in neutron-star binary inspirals , 2020, Physical Review D.

[4]  N. Andersson,et al.  Tidal deformations of neutron stars with elastic crusts , 2020, 2003.05449.

[5]  Hang Yu,et al.  Excitation of f -modes during mergers of spinning binary neutron star , 2020, Physical Review D.

[6]  L. Rezzolla,et al.  Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. , 2019, Physical review letters.

[7]  T. Damour,et al.  Comparing effective-one-body Hamiltonians for spin-aligned coalescing binaries , 2019, Physical Review D.

[8]  M. Alford,et al.  Relativistic hybrid stars with sequential first-order phase transitions and heavy-baryon envelopes , 2019, Physical Review D.

[9]  J. Vines,et al.  Gravitomagnetic tidal effects in gravitational waves from neutron star binaries , 2018, Physical Review D.

[10]  M. Shibata,et al.  Constraint on the maximum mass of neutron stars using GW170817 event , 2019, Physical Review D.

[11]  L. Rezzolla,et al.  A General-relativistic Determination of the Threshold Mass to Prompt Collapse in Binary Neutron Star Mergers , 2019, The Astrophysical Journal.

[12]  T. Damour,et al.  Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries , 2018, Physical Review D.

[13]  L. Rezzolla,et al.  Constraining twin stars with GW170817 , 2018, Physical Review D.

[14]  S. Schramm,et al.  Can magnetic fields (de)stabilize twin stars? , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  K. Chatziioannou,et al.  Identifying a First-Order Phase Transition in Neutron-Star Mergers through Gravitational Waves. , 2018, Physical review letters.

[16]  L. J. Papenfort,et al.  Signatures of Quark-Hadron Phase Transitions in General-Relativistic Neutron-Star Mergers. , 2018, Physical review letters.

[17]  S. Schramm,et al.  Constraining Strangeness in Dense Matter with GW170817 , 2018, The Astrophysical Journal.

[18]  C. Broeck,et al.  Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects , 2018, Physical Review D.

[19]  L. Gualtieri,et al.  Magnetic tidal Love numbers clarified , 2018, Physical Review D.

[20]  H. Zong,et al.  Constraints on the hybrid equation of state with a crossover hadron-quark phase transition in the light of GW170817 , 2018, Physical Review D.

[21]  L. Gualtieri,et al.  Impact of high-order tidal terms on binary neutron-star waveforms , 2018, Physical Review D.

[22]  Thibault Damour,et al.  Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects , 2018, Physical Review D.

[23]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[24]  L. Gualtieri,et al.  Post-Newtonian spin-tidal couplings for compact binaries , 2018, Physical Review D.

[25]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[26]  Andrea Taracchini,et al.  Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics , 2018, Physical Review D.

[27]  A. Drago,et al.  Are Small Radii of Compact Stars Ruled out by GW170817/AT2017gfo? , 2018, The Astrophysical Journal.

[28]  Luciano Rezzolla,et al.  New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. , 2018, Physical review letters.

[29]  E. Zhou,et al.  Neutron Star Equation of State from the Quark Level in Light of GW170817 , 2018, The Astrophysical Journal.

[30]  T. Hinderer,et al.  Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems , 2018, Classical and Quantum Gravity.

[31]  Sanjay Reddy,et al.  Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations , 2018, The Astrophysical Journal.

[32]  V. Paschalidis,et al.  Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars , 2017, 1712.00451.

[33]  C. Horowitz,et al.  Neutron Skins and Neutron Stars in the Multimessenger Era. , 2017, Physical review letters.

[34]  E. Zhou,et al.  Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario , 2017, 1711.04312.

[35]  A. Vuorinen,et al.  Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. , 2017, Physical review letters.

[36]  M. Ruiz,et al.  GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. , 2017, Physical review. D..

[37]  T. Hinderer,et al.  Gravitational Waves from Merging Binary Neutron-Star Systems , 2018 .

[38]  Sebastiano Bernuzzi,et al.  GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations , 2017, 1711.03647.

[39]  L. Rezzolla,et al.  Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars , 2017, 1711.00314.

[40]  Hans-Thomas Janka,et al.  Neutron-star Radius Constraints from GW170817 and Future Detections , 2017, 1710.06843.

[41]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[42]  B. Metzger,et al.  Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817 , 2017, 1710.05938.

[43]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[44]  N. Yunes,et al.  Approximate Universal Relations for Neutron Stars and Quark Stars , 2016, 1608.02582.

[45]  A. Taracchini,et al.  Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian , 2016, 1608.01907.

[46]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[47]  A. Sulaksono,et al.  Quark matter at high density based on an extended confined isospin-density-dependent mass model , 2016, 1605.01154.

[48]  Luciano Rezzolla,et al.  Gravitational-wave signal from binary neutron stars: A systematic analysis of the spectral properties , 2016, 1604.00246.

[49]  Lawrence E. Kidder,et al.  Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. , 2016, Physical review letters.

[50]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[51]  L. Gualtieri,et al.  Tidal Love numbers of a slowly spinning neutron star , 2015, 1509.02171.

[52]  P. Landry,et al.  Gravitomagnetic response of an irrotational body to an applied tidal field , 2015, 1504.06606.

[53]  F. Gulminelli,et al.  Unified treatment of subsaturation stellar matter at zero and finite temperature , 2015, 1504.04493.

[54]  S. Bernuzzi,et al.  Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers. , 2015, Physical review letters.

[55]  L. Gualtieri,et al.  Tidal deformations of a spinning compact object , 2015, 1503.07365.

[56]  L. Baiotti,et al.  Spectral properties of the post-merger gravitational-wave signal from binary neutron stars , 2014, 1412.3240.

[57]  D. Chatterjee,et al.  Consistent neutron star models with magnetic-field-dependent equations of state , 2014, 1410.6332.

[58]  N. Bucciantini,et al.  Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition , 2014, 1401.4308.

[59]  Kent Yagi Multipole Love Relations , 2013, 1311.0872.

[60]  F. Pannarale,et al.  On the universality of I-Love-Q relations in magnetized neutron stars , 2013, 1309.3885.

[61]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[62]  J. Read,et al.  Matter effects on binary neutron star waveforms , 2013, 1306.4065.

[63]  R. Ciolfi,et al.  Twisted-torus configurations with large toroidal magnetic fields in relativistic stars , 2013, 1306.2803.

[64]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[65]  V. Cardoso,et al.  Equation-of-state-independent relations in neutron stars , 2013, 1304.2052.

[66]  N. Yunes,et al.  I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars , 2013, Science.

[67]  Luciano Rezzolla,et al.  INSTABILITY-DRIVEN EVOLUTION OF POLOIDAL MAGNETIC FIELDS IN RELATIVISTIC STARS , 2011, 1105.3971.

[68]  P. Lasky,et al.  HYDROMAGNETIC INSTABILITIES IN RELATIVISTIC NEUTRON STARS , 2011, 1105.1895.

[69]  T. Hinderer,et al.  Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.

[70]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[71]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[72]  J. Lattimer,et al.  Tidal Love numbers of neutron and self-bound quark stars , 2010, 1004.5098.

[73]  Benno Willke,et al.  The third generation of gravitational wave observatories and their science reach , 2010 .

[74]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[75]  T. Damour,et al.  Relativistic tidal properties of neutron stars , 2009, 0906.0096.

[76]  E. Poisson,et al.  Relativistic theory of tidal Love numbers , 2009, 0906.1366.

[77]  R. Ciolfi,et al.  Relativistic models of magnetars: the twisted torus magnetic field configuration , 2009, 0903.0556.

[78]  B. Giacomazzo,et al.  Can magnetic fields be detected during the inspiral of binary neutron stars , 2009, 0901.2722.

[79]  Duncan A. Brown,et al.  Model waveform accuracy standards for gravitational wave data analysis , 2008, 0809.3844.

[80]  P. Ajith,et al.  Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .

[81]  K. Kiuchi,et al.  Relativistic stars with purely toroidal magnetic fields , 2008, 0802.2983.

[82]  L. Gualtieri,et al.  Relativistic models of magnetars: structure and deformations , 2007, 0712.2162.

[83]  T. Hinderer Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.

[84]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[85]  '. Racine,et al.  Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries , 2006, gr-qc/0601029.

[86]  L. Rezzolla,et al.  Electromagnetic fields in the exterior of an oscillating relativistic star – I. General expressions and application to a rotating magnetic dipole , 2004, gr-qc/0406018.

[87]  K. Ioka,et al.  Relativistic Stars with Poloidal and Toroidal Magnetic Fields and Meridional Flow , 2003, astro-ph/0305352.

[88]  L. Rezzolla,et al.  Erratum: General relativistic electromagnetic fields of a slowly rotating magnetized neutron star – I. Formulation of the equations , 2000, astro-ph/0011316.

[89]  L. Rezzolla,et al.  General Relativistic Electromagnetic Fields of A Slowly Rotating Magnetized Neutron Star , 2001, astro-ph/0112032.

[90]  C. Cardall,et al.  Submitted to the Astrophysical Journal Effects of Strong Magnetic Fields on Neutron Star Structure , 2000 .

[91]  K. Ioka,et al.  Gravitational Waves from Inspiraling Compact Binaries with Magnetic Dipole Moments , 2000, astro-ph/0001218.

[92]  K. Konno,et al.  Deformation of relativistic magnetized stars , 1999, gr-qc/9910038.

[93]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[94]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[95]  ROTATING NEUTRON STAR MODELS WITH MAGNETIC FIELD , 1995, gr-qc/9503044.

[96]  R. Wiringa,et al.  Equation of state for dense nucleon matter. , 1988, Physical review. C, Nuclear physics.

[97]  T. Ainsworth,et al.  The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations , 1987 .

[98]  R. Tayler The Adiabatic Stability of Stars Containing Magnetic Fields–I: TOROIDAL FIELDS , 1973 .