Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models

Biological ion channels and synthetic nanopores are responsible for passive transport of ions through a membrane between two compartments. Modeling these ionic currents is especially amenable to reduced models because the device functions of these pores, the relation of input parameters (e.g., applied voltage, bath concentrations) and output parameters (e.g., current, rectification, selectivity), are well defined. Reduced models focus on the physics that produces the device functions (i.e., the physics of how inputs become outputs) rather than the atomic/molecular-scale physics inside the pore. Here, we propose four rules of thumb for constructing good reduced models of ion channels and nanopores. They are about (1) the importance of the axial concentration profiles, (2) the importance of the pore charges, (3) choosing the right explicit degrees of freedom, and (4) creating the proper response functions. We provide examples for how each rule of thumb helps in creating a reduced model of device behavior.

[1]  B. Eisenberg Asking biological questions of physical systems: The device approach to emergent properties , 2018, Journal of Molecular Liquids.

[2]  S. Varma,et al.  Tuning ion coordination architectures to enable selective partitioning. , 2006, Biophysical journal.

[3]  D. Friel,et al.  Voltage-gated calcium channels: direct observation of the anomalous mole fraction effect at the single-channel level. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion , 2009, The Journal of general physiology.

[5]  R. Tsien,et al.  Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells , 1986, The Journal of general physiology.

[6]  D. Gillespie,et al.  The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity. , 2008, Biophysical journal.

[7]  D. Gillespie,et al.  Scaling Behavior of Bipolar Nanopore Rectification with Multivalent Ions , 2019, The Journal of Physical Chemistry C.

[8]  D. Busath,et al.  Monte Carlo Study of the Effect of Ion and Channel Size on the Selectivity of a Model Calcium Channel , 2001 .

[9]  W. Stühmer,et al.  Calcium channel characteristics conferred on the sodium channel by single mutations , 1992, Nature.

[10]  T. Kristóf,et al.  Selective transport through a model calcium channel studied by Local Equilibrium Monte Carlo simulations coupled to the Nernst–Planck equation , 2014 .

[11]  Z. Siwy,et al.  Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. , 2008, Biophysical journal.

[12]  Dirk Gillespie,et al.  Ion correlations in nanofluidic channels: effects of ion size, valence, and concentration on voltage- and pressure-driven currents. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[13]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[14]  D. Gillespie Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. , 2008, Biophysical journal.

[15]  D. Gillespie,et al.  Is ryanodine receptor a calcium or magnesium channel? Roles of K+ and Mg2+ during Ca2+ release. , 2012, Cell calcium.

[16]  T. Kristóf,et al.  Relating binding affinity to dynamical selectivity from dynamic monte carlo simulations of a model calcium channel , 2010 .

[17]  P. Bohn,et al.  Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow: Effect of Surface Charge Density and Debye Length , 2001 .

[18]  D. Gillespie,et al.  Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. , 2008, Biophysical journal.

[19]  M. Wolfram,et al.  Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo. , 2017, The Journal of chemical physics.

[20]  D. Busath,et al.  Monte Carlo Simulations of the Mechanism for Channel Selectivity: The Competition between Volume Exclusion and Charge Neutrality , 2000 .

[21]  Dirk Gillespie,et al.  Ca2+ selectivity of a chemically modified OmpF with reduced pore volume. , 2006, Biophysical journal.

[22]  R. E. Gyurcsányi,et al.  Electrochemical sensing with nanopores : A mini review , 2014 .

[23]  D. Gillespie High energy conversion efficiency in nanofluidic channels. , 2012, Nano letters.

[24]  A. Dallos,et al.  Simulation of a model nanopore sensor: Ion competition underlies device behavior. , 2017, The Journal of chemical physics.

[25]  D. Gillespie,et al.  Energetics of counterion adsorption in the electrical double layer. , 2019, The Journal of chemical physics.

[26]  Mubarak Ali,et al.  Calcium binding and ionic conduction in single conical nanopores with polyacid chains: model and experiments. , 2012, ACS nano.

[27]  R. Tsien,et al.  Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore , 1986, The Journal of general physiology.

[28]  D. Boda,et al.  Modeling of a pH–tunable dual–response nanopore sensor , 2020, Journal of Molecular Liquids.

[29]  P. Nuttall,et al.  Ion Transport in Nanopores , 2013 .

[30]  B. Eisenberg,et al.  Anomalous mole fraction effect, electrostatics, and binding in ionic channels. , 1998, Biophysical journal.

[31]  J. Vrabec,et al.  Simulation study of a rectifying bipolar ion channel: Detailed model versus reduced model , 2016, 1603.02440.

[32]  D. Boda,et al.  Simulating Ion Transport with the NP+LEMC Method. Applications to Ion Channels and Nanopores. , 2017 .

[33]  T. Kristóf,et al.  Simulation of steady-state diffusion: driving force ensured by dual control volumes or local equilibrium Monte Carlo. , 2012, The Journal of chemical physics.

[34]  B. Eisenberg,et al.  Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.

[35]  Dirk Gillespie,et al.  Two rings of negative charges in the cytosolic vestibule of type-1 ryanodine receptor modulate ion fluxes. , 2006, Biophysical journal.

[36]  R. Eisenberg,et al.  Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores. , 2014, Journal of chemical theory and computation.

[37]  D. Pietrobon,et al.  Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion , 1989, The Journal of general physiology.

[38]  Chi On Chui,et al.  On the origin of enhanced sensitivity in nanoscale FET-based biosensors , 2014, Proceedings of the National Academy of Sciences.

[39]  D. Gillespie,et al.  Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations. , 2012, Journal of chemical theory and computation.

[40]  D. Boda,et al.  Rectification of bipolar nanopores in multivalent electrolytes: effect of charge inversion and strong ionic correlations. , 2020, Physical chemistry chemical physics : PCCP.

[41]  Dezso Boda,et al.  The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel. , 2006, The Journal of chemical physics.

[42]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[43]  Bob Eisenberg,et al.  Monte Carlo simulations of ion selectivity in a biological Na channel: Charge–space competition , 2002 .

[44]  Dirk Gillespie,et al.  (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel. , 2005, The journal of physical chemistry. B.

[45]  T. Kristóf,et al.  Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: From all-atom model to Poisson-Nernst-Planck. , 2019, The Journal of chemical physics.

[46]  Walther Nernst Zur Kinetik der in Lösung befindlichen Körper , 1888 .

[47]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[48]  W. Almers,et al.  A non‐selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. , 1984, The Journal of physiology.

[49]  Robert S. Eisenberg,et al.  Tuning transport properties of nanofluidic devices with local charge inversion. , 2009, Journal of the American Chemical Society.

[50]  E. Marbán,et al.  Permeation in the dihydropyridine-sensitive calcium channel. Multi-ion occupancy but no anomalous mole-fraction effect between Ba2+ and Ca2+ , 1990, The Journal of general physiology.

[51]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[52]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[53]  M. Sansom,et al.  Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. , 2001, Biochimica et biophysica acta.

[54]  J. Sweedler,et al.  Nanofluidics in chemical analysis. , 2010, Chemical Society reviews.

[55]  A. Dallos,et al.  Controlling ion transport through nanopores: modeling transistor behavior. , 2018, Physical chemistry chemical physics : PCCP.

[56]  Z. Siwy,et al.  Nanofluidic Bipolar Transistors , 2008 .

[57]  M. Valisk'o,et al.  The effect of the charge pattern on the applicability of a nanopore as a sensor , 2018, Journal of Molecular Liquids.

[58]  J. Leburton,et al.  p-n Semiconductor membrane for electrically tunable ion current rectification and filtering. , 2007, Nano letters.

[59]  Dirk Gillespie,et al.  Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. , 2004, Biophysical journal.

[60]  D. Boda,et al.  Controlling ionic current through a nanopore by tuning pH: a local equilibrium Monte Carlo study , 2018, Molecular Physics.

[61]  D. Henderson,et al.  Simulations of calcium channel block by trivalent cations: Gd(3+) competes with permeant ions for the selectivity filter. , 2010, Biochimica et biophysica acta.

[62]  D. Henderson,et al.  The role of solvation in the binding selectivity of the L-type calcium channel. , 2013, The Journal of chemical physics.

[63]  Z. Siwy,et al.  Nanopores: Generation, Engineering, and Single-Molecule Applications , 2009 .

[64]  D. Gillespie,et al.  Dynamic Monte Carlo simulation of coupled transport through a narrow multiply-occupied pore , 2013, 1310.2054.

[65]  G. Meissner,et al.  Selecting ions by size in a calcium channel: the ryanodine receptor case study. , 2014, Biophysical journal.

[66]  Dirk Gillespie,et al.  Ion Accumulation in a Biological Calcium Channel: Effects of Solvent and Confining Pressure , 2001 .

[67]  Arun Majumdar,et al.  Ion transport in nanofluidic channels , 2004 .

[68]  Dezso Boda,et al.  Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. , 2007, Physical review letters.

[69]  Olga Babich,et al.  Block of CaV1.2 Channels by Gd3+ Reveals Preopening Transitions in the Selectivity Filter , 2007, The Journal of general physiology.

[70]  M. Bechelany,et al.  Functionalization of single solid state nanopores to mimic biological ion channels: A review. , 2017, Advances in colloid and interface science.

[71]  T. Kristóf,et al.  Current and selectivity in a model sodium channel under physiological conditions: Dynamic Monte Carlo simulations. , 2012, Biochimica et biophysica acta.

[72]  B. Eisenberg,et al.  Self-organized models of selectivity in calcium channels , 2011, Physical biology.

[73]  P. Jungwirth,et al.  A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. , 2020, The Journal of chemical physics.

[74]  Dezso Boda,et al.  Protein structure and ionic selectivity in calcium channels: selectivity filter size, not shape, matters. , 2009, Biochimica et biophysica acta.

[75]  D. J. Adams,et al.  Chemical potential of hard-sphere fluids by Monte Carlo methods , 1974 .

[76]  Ion channel selectivity using an electric stew. , 2000, Biophysical journal.

[77]  B. Eisenberg,et al.  Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method. , 2011, The Journal of chemical physics.

[78]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[79]  Ye Tian,et al.  Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels , 2016 .

[80]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[81]  Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations. , 2017, Physical chemistry chemical physics : PCCP.

[82]  J. Eijkel,et al.  Nanofluidics and the chemical potential applied to solvent and solute transport. , 2010, Chemical Society reviews.

[83]  D. Busath,et al.  Monte Carlo study of the selectivity of calcium channels: improved geometrical model , 2002 .

[84]  D. Gillespie,et al.  Reinterpreting the anomalous mole fraction effect: the ryanodine receptor case study. , 2009, Biophysical journal.

[85]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[86]  G. Gokel,et al.  Synthetic ion channels: from pores to biological applications. , 2013, Accounts of chemical research.