Estimating ground-level PM 2.5 using aerosol optical depth determined from satellite remot

A convertible table is comprised of a central planar section and two end sections. The end sections are hingedly secured to the central planar section for rotation thereabout. Each end section has a pair of legs fixedly secured thereto. The legs are not capable of movement with respect to the end sections, but rotate with the end sections. Utilizing the aforementioned approach, a number of table designs are possible. For example, to facilitate folding, the pair of legs attached to one end section may have a greater distance therebetween than does the pair of legs attached to the other end section. In this manner, when the end sections are folded to a position perpendicular to the central planar section, a coffee table, or cocktail table or the like having a lower overall height is formed. The end sections support the central planar section and also form two sides of the table. The legs form the other two sides of the table and may also support the central planar section.

[1]  R. Hirsch,et al.  METHODS OF FITTING A STRAIGHT LINE TO DATA: EXAMPLES IN WATER RESOURCES , 1984 .

[2]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[3]  Bernard Pinty,et al.  Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[5]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[6]  Mian Chin,et al.  Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets , 2000 .

[7]  D. Jacob Heterogeneous chemistry and tropospheric ozone , 2000 .

[8]  J. Schwartz,et al.  Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. , 2001, American journal of respiratory and critical care medicine.

[9]  D. Jacob,et al.  Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields , 2001 .

[10]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[11]  Kathleen A. Crean,et al.  Regional aerosol retrieval results from MISR , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[13]  R. Burnett,et al.  Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. , 2002, JAMA.

[14]  Yoram J. Kaufman,et al.  Relationship between surface reflectance in the visible and mid‐IR used in MODIS aerosol algorithm ‐ theory , 2002 .

[15]  R. Martin,et al.  Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols , 2003 .

[16]  P. Formenti,et al.  Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning , 2003 .

[17]  B. Holben,et al.  Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) , 2003 .

[18]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[19]  Mian Chin,et al.  Sources of carbonaceous aerosols over the United States and implications for natural visibility , 2003 .

[20]  Jun Wang,et al.  Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies , 2003 .

[21]  C. Blanchard,et al.  TRENDS IN AMBIENT NOX AND PARTICULATE NITRATE CONCENTRATIONS IN CALIFORNIA, 1980-2000 , 2003 .

[22]  Sundar A. Christopher,et al.  Aerosol optical thickness and PM 2 . 5 1 Intercomparison between Satellite-Derived Aerosol Optical Thickness and PM 2 , 2003 .

[23]  Raymond M Hoff,et al.  Recommendations on the Use of Satellite Remote-Sensing Data for Urban Air Quality , 2004, Journal of the Air & Waste Management Association.

[24]  D. Jacob,et al.  Mapping annual mean ground‐level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States , 2004 .

[25]  David M. Winker,et al.  Status and performance of the CALIOP lidar , 2004, SPIE Remote Sensing.

[26]  Basil W. Coutant,et al.  Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality , 2004 .

[27]  Tami C. Bond,et al.  Analysis of Multi‐angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001–2004 , 2004 .

[28]  Yang Liu,et al.  Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States , 2004 .

[29]  Sang Woo Kim,et al.  Environmental snapshots from ACE-Asia , 2004 .

[30]  M. Chin,et al.  Natural and transboundary pollution influences on sulfate‐nitrate‐ammonium aerosols in the United States: Implications for policy , 2004 .

[31]  S. Slanina,et al.  Aerosol pollution in some Chinese cities (IUPAC Technical Report) , 2004 .

[32]  Michael B. McElroy,et al.  A nested grid formulation for chemical transport over Asia: Applications to CO , 2004 .

[33]  William C. Malm,et al.  Spatial and monthly trends in speciated fine particle concentration in the United States , 2004 .

[34]  Yoram J. Kaufman,et al.  Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia , 2005 .

[35]  David J. Diner,et al.  Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites , 2005 .

[36]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[37]  Raymond M Hoff,et al.  Application of Satellite Remote-Sensing Data for Source Analysis of Fine Particulate Matter Transport Events , 2005, Journal of the Air & Waste Management Association.

[38]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[39]  D. Jacob,et al.  Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. , 2005, Environmental science & technology.

[40]  D. Chu,et al.  Improving National Air Quality Forecasts with Satellite Aerosol Observations , 2005 .

[41]  Yoram J. Kaufman,et al.  Dust transport and deposition observed from the Terra‐Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean , 2005 .

[42]  Nghiem Trung Dung,et al.  Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources , 2006 .

[43]  Naresh Kumar,et al.  Regional Visibility Statistics in the United States: Natural and Transboundary Pollution Influences, and Implications for the Regional Haze Rule , 2006 .

[44]  R. Martin,et al.  Global retrieval of columnar aerosol single scattering albedo from space‐based observations , 2007 .