A polygon-based interpolation operator for super-resolution imaging

We outline the super-resolution reconstruction problem posed as a maximization of probability. We then introduce an interpolation method based on polygonal pixel overlap, express it as a linear operator, and use it to improve reconstruction. Polygon interpolation outperforms the simpler bilinear interpolation operator and, unlike Gaussian modeling of pixels, requires no parameter estimation. A free software implementation that reproduces the results shown is provided.

[1]  W. James MacLean,et al.  CCD noise removal in digital images , 2006, IEEE Transactions on Image Processing.

[2]  J. Janesick,et al.  Scientific Charge-Coupled Devices , 2001 .

[3]  Brian A. Barsky,et al.  An analysis and algorithm for polygon clipping , 1983, CACM.

[4]  Van der Walt Stefan,et al.  Methods used in increased resolution processing , 2007 .

[5]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Luciano Alparone,et al.  Pan-sharpening of multispectral images: a critical review and comparison , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[7]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[8]  David Capel,et al.  Image Mosaicing and Super-resolution , 2004, Distinguished Dissertations.

[9]  Peter Cheeseman,et al.  Super-Resolved Surface Reconstruction from Multiple Images , 1996 .

[10]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[11]  Frédéric Guichard,et al.  Velocity estimation from images sequence and application to super-resolution , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[12]  Van der Walt,et al.  Super-resolution imaging , 2018, Mathematical and Computational Methods in Photonics and Phononics.

[13]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[14]  Dani Lischinski,et al.  Colorization using optimization , 2004, ACM Trans. Graph..

[15]  J. Fridrich,et al.  Digital image forensics , 2009, IEEE Signal Processing Magazine.

[16]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[17]  Patrick-Gilles Maillot,et al.  A new, fast method for 2D polygon clipping: analysis and software implementation , 1992, TOGS.

[18]  Thomas S. Huang,et al.  Image super-resolution as sparse representation of raw image patches , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.