PRECISE ASYMPTOTICS OF SMALL EIGENVALUES OF REVERSIBLE DIFFUSIONS IN THE METASTABLE REGIME
暂无分享,去创建一个
[1] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[2] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[3] Mirosław Krzyżański. Partial differential equations of second order , 1971 .
[4] S. Varadhan,et al. On the principal eigenvalue of second‐order elliptic differential operators , 1976 .
[5] Avner Friedman,et al. Asymptotic behavior of the principal eigenfunction for a singularly perturbed Dirichlet problem , 1978 .
[6] Zeev Schuss,et al. Theory and Applications of Stochastic Differential Equations , 1980 .
[7] E. Davies,et al. Metastable States of Symmetric Markov Semigroups II , 1982 .
[8] Shmuel Agmon,et al. Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .
[9] E. Davies,et al. Metastable States of Symmetric Markov Semigroups I , 1982 .
[10] E. Davies. Spectral properties of metastable Markov semigroups , 1983 .
[11] M. V. Day,et al. On the exponential exit law in the small parameter exit problem , 1983 .
[12] J. Doob. Classical potential theory and its probabilistic counterpart , 1984 .
[13] Barry Simon,et al. Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .
[14] Bernard Helffer,et al. Multiple wells in the semi-classical limit I , 1984 .
[15] Antonio Galves,et al. Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .
[16] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[17] S. R. S. Varadhan. RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS (Grundlehren der mathematischen Wissenschaften, 260) , 1985 .
[18] C. Knessl,et al. An Asymptotic Theory of Large Deviations for Markov Jump Processes , 1985 .
[19] B. Helffer,et al. Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation , 1985 .
[20] Charles M. Newman,et al. The Metastable Behavior of Infrequently Observed, Weakly Random, One-Dimensional Diffusion Processes , 1985 .
[21] M. Brelot. Classical potential theory and its probabilistic counterpart , 1986 .
[22] Fabio Martinelli,et al. Small random perturbations of dynamical systems: Exponential loss of memory of the initial condition , 1988 .
[23] Bernard Helffer,et al. Semi-Classical Analysis for the Schrödinger Operator and Applications , 1988 .
[24] M. R. James,et al. Asymptotic Series and Exit Time Probabilities , 1992 .
[25] Subcriticality and gaugeability of the Schrodinger operator , 1992 .
[26] L. Arnold. Stochastic Differential Equations: Theory and Applications , 1992 .
[27] Laurent Miclo. Comportement de spectres d'opérateurs de Schrödinger à basse température , 1995 .
[28] R. Pinsky. Positive Harmonic Functions and Diffusion: References , 1995 .
[29] Y. Pinchover. On positivity, criticality, and the spectral radius of the shuttle operator for elliptic operators , 1996 .
[30] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[31] B. Gaveau,et al. Theory of nonequilibrium first-order phase transitions for stochastic dynamics , 1998 .
[32] A. Bovier,et al. Metastability in stochastic dynamics of disordered mean-field models , 1998, cond-mat/9811331.
[33] B. Gaveau,et al. Metastable relaxation times and absorption probabilities for multidimensional stochastic systems , 2000 .
[34] A. Bovier,et al. Metastability and Low Lying Spectra¶in Reversible Markov Chains , 2000, math/0007160.
[35] V. Kolokoltsov. Semiclassical Analysis for Diffusions and Stochastic Processes , 2000 .
[36] A. Bovier,et al. Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .
[37] David E. Edmunds,et al. Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.