$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes

In this paper, we study skew constacyclic codes over the ring $\mathbb{Z}_{q}R$ where $R=\mathbb{Z}_{q}+u\mathbb{Z}_{q}$, $q=p^{s}$ for a prime $p$ and $u^{2}=0$. We give the definition of these codes as subsets of the ring $\mathbb{Z}_{q}^{\alpha}R^{\beta}$. Some structural properties of the skew polynomial ring $ R[x,\theta]$ are discussed, where $ \theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\mathbb{Z}_{q}R$. Using Gray images of skew constacyclic codes over $\mathbb{Z}_{q}R$ we obtained some new linear codes over $\mathbb{Z}_4$. Further, we have generalized these codes to double skew constacyclic codes over $\mathbb{Z}_{q}R$.

[1]  Nuh Aydin,et al.  A Database of Z4 Codes , 2015, ArXiv.

[2]  Rama Krishna Bandi,et al.  A note on cyclic codes over ℤ4 + uℤ4 , 2016, Discret. Math. Algorithms Appl..

[3]  Rama Krishna Bandi,et al.  On cyclic codes over $\mathbb{Z}_q+u\mathbb{Z}_q$ , 2015 .

[4]  Taher Abualrub,et al.  ℤ2ℤ2[u]-Cyclic and Constacyclic Codes , 2017, IEEE Trans. Inf. Theory.

[5]  Sarra Manseri Skew Constacyclic Codes Over the Ring , 2020 .

[6]  Jian Gao SKEW CYCLIC CODES OVER Fp+ vFp , 2013 .

[7]  Irfan Siap,et al.  New quasi-cyclic codes over F5 , 2002, Appl. Math. Lett..

[8]  Rumen N. Daskalov,et al.  New binary one-generator quasi-cyclic codes , 2003, IEEE Trans. Inf. Theory.

[9]  Jaume Pujol,et al.  Z2Z4-linear codes: generator matrices and duality , 2007, ArXiv.

[10]  Patrick Solé,et al.  From skew-cyclic codes to asymmetric quantum codes , 2010, Adv. Math. Commun..

[11]  Nuh Aydin,et al.  A generalization of quasi-twisted codes: Multi-twisted codes , 2017, Finite Fields Their Appl..

[12]  Felix Ulmer,et al.  Skew-cyclic codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[13]  Joaquim Borges,et al.  Z2Z4-additive cyclic codes, generator polynomials and dual codes , 2014, ArXiv.

[14]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[15]  Sihem Mesnager,et al.  DNA cyclic codes over rings , 2017, Adv. Math. Commun..

[16]  Markus Grassl,et al.  Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes , 2017, Adv. Math. Commun..

[17]  Bahattin Yildiz,et al.  Construction of skew cyclic codes over 픽q+v픽q , 2014, Adv. Math. Commun..

[18]  Yasemin Cengellenmis,et al.  On the codes over the Z_3+vZ_3+v^2Z_3 , 2015, ArXiv.

[19]  Taher Abualrub,et al.  $\BBZ_{2}\BBZ_{4}$ -Additive Cyclic Codes , 2014, IEEE Transactions on Information Theory.

[20]  Shixin Zhu,et al.  (1+u) constacyclic and cyclic codes over F2+uF2 , 2006, Appl. Math. Lett..

[21]  Maheshanand Bhaintwal,et al.  A class of skew-constacyclic codes over ℤ4 + uℤ4 , 2017, Int. J. Inf. Coding Theory.

[22]  Taher Abualrub,et al.  Skew cyclic codes of arbitrary length , 2011, Int. J. Inf. Coding Theory.

[23]  Nuh Aydin,et al.  New quinary linear codes from quasi-twisted codes and their duals , 2011, Appl. Math. Lett..

[24]  Rumen N. Daskalov,et al.  New minimum distance bounds for linear codes over GF(5) , 2004, Discret. Math..

[25]  Xiaoshan Kai,et al.  On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-$(1+u)$-additive constacyclic , 2016 .

[26]  Rama Krishna Bandi,et al.  Some results on cyclic codes over ℤq + uℤq , 2015, Discret. Math. Algorithms Appl..