Spectral separation of the stochastic gravitational-wave background for LISA: Observing both cosmological and astrophysical backgrounds

With the goal of attempting to observe a stochastic gravitational wave background (SGWB) with LISA, the spectral separability of the cosmological and astrophysical backgrounds is important to estimate. We attempt to determine the level with which a cosmological background can be observed given the predicted astrophysical background level. We predict detectable limits for the future LISA measurement of the SGWB. Adaptive Markov chain Monte-Carlo methods are used to produce estimates with the simulated data from the LISA Data challenge (LDC). We also calculate the Cramer-Rao lower bound on the variance of the SGWB parameter uncertainties based on the inverse Fisher Information using the Whittle Likelihood. The estimation of the parameters is done with the 3 LISA channels $A$, $E$, and $T$. We simultaneously estimate the noise using a LISA noise model. Assuming the expected astrophysical background, a cosmological background energy density of around $\Omega_{GW,Cosmo} \approx 1 \times 10^{-12}$ to $1 \times 10^{-13}$ can be detected by LISA.

[1]  S. Babak,et al.  Characterization of the stochastic signal originating from compact binary populations as measured by LISA , 2021, Physical Review D.

[2]  M. J. Williams,et al.  Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run , 2021, 2101.12130.

[3]  P. Meyers,et al.  Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors , 2020, 2011.05697.

[4]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[5]  R. Flauger,et al.  Improved reconstruction of a stochastic gravitational wave background with LISA , 2020, Journal of Cosmology and Astroparticle Physics.

[6]  T. Regimbau,et al.  startrack predictions of the stochastic gravitational-wave background from compact binary mergers , 2020, 2008.04890.

[7]  C. Baccigalupi,et al.  Measuring the spectrum of primordial gravitational waves with CMB, PTA and laser interferometers , 2020, Journal of Cosmology and Astroparticle Physics.

[8]  A. Petiteau,et al.  Assessing the detectability of a stochastic gravitational wave background with LISA, using an excess of power approach , 2020, Classical and Quantum Gravity.

[9]  E. Thrane,et al.  Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds. , 2020, Physical review letters.

[10]  A. Mahabal,et al.  A Systematic Search of Zwicky Transient Facility Data for Ultracompact Binary LISA-detectable Gravitational-wave Sources , 2020, The Astrophysical Journal.

[11]  P. Meyers,et al.  Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise , 2020, Physical Review D.

[12]  J. Harms,et al.  Searching for cosmological gravitational-wave backgrounds with third-generation detectors in the presence of an astrophysical foreground , 2020, Physical Review D.

[13]  E. Barausse,et al.  Foreground cleaning and template-free stochastic background extraction for LISA , 2020, Journal of Cosmology and Astroparticle Physics.

[14]  C. Moore,et al.  Populations of double white dwarfs in Milky Way satellites and their detectability with LISA , 2020, Astronomy & Astrophysics.

[15]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[16]  B. A. Boom,et al.  A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals , 2019, Classical and Quantum Gravity.

[17]  Chia-Feng Chang,et al.  Stochastic gravitational wave background from global cosmic strings , 2019, Physics of the Dark Universe.

[18]  Tristan L. Smith,et al.  LISA for cosmologists: Calculating the signal-to-noise ratio for stochastic and deterministic sources , 2019, Physical Review D.

[19]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[20]  Richard Walters,et al.  General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system , 2019, Nature.

[21]  T. Littenberg,et al.  Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  C. Caprini,et al.  Reconstructing the spectral shape of a stochastic gravitational wave background with LISA , 2019, Journal of Cosmology and Astroparticle Physics.

[23]  M. S. Shahriar,et al.  Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run , 2019, Physical Review D.

[24]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[25]  Nelson Christensen,et al.  Stochastic gravitational wave backgrounds , 2018, Reports on progress in physics. Physical Society.

[26]  F. Huang,et al.  Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA , 2018, The Astrophysical Journal.

[27]  Rory Smith,et al.  Optimal Search for an Astrophysical Gravitational-Wave Background , 2017, 1712.00688.

[28]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[29]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[30]  T. Regimbau,et al.  Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background. , 2016, Physical review letters.

[31]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[32]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[33]  B. A. Boom,et al.  GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. , 2016, Physical review letters.

[34]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[35]  A. Parida,et al.  Component separation of a isotropic Gravitational Wave Background , 2015, 1510.07994.

[36]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[37]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[38]  N. Cornish,et al.  Detecting a Stochastic Gravitational Wave Background in the presence of a Galactic Foreground and Instrument Noise , 2013, 1307.4116.

[39]  Nelson Christensen,et al.  Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.

[40]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[41]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[42]  N. Cornish,et al.  Discriminating between a stochastic gravitational wave background and instrument noise , 2010, 1002.1291.

[43]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[44]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[45]  J. García-Bellido,et al.  Stochastic background of gravitational waves from hybrid preheating. , 2006, Physical review letters.

[46]  J. Camp,et al.  GRAVITATIONAL WAVE ASTRONOMY , 2004 .

[47]  A. Vecchio,et al.  A family of filters to search for frequency-dependent gravitational wave stochastic backgrounds , 2003, gr-qc/0312061.

[48]  N. Cornish,et al.  The effects of orbital motion on LISA time delay interferometry , 2003, gr-qc/0306096.

[49]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[50]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[51]  Neil J. CornishShane L. Larson Space missions to detect the cosmic gravitational-wave background , 2001, gr-qc/0103075.

[52]  Nelson Christensen,et al.  Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .

[53]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[54]  M. Füllekrug Schumann resonances in magnetic field components , 1995 .

[55]  Henriques,et al.  Exact calculation of the energy density of cosmological gravitational waves. , 1994, Physical review. D, Particles and fields.

[56]  H. Volland,et al.  Handbook of atmospheric electrodynamics , 1995 .