Attosecond photoionization dynamics in the vicinity of the Cooper minima in argon

Using a spectrally resolved electron interferometry technique, we measure photoionization time delays between the $3s$ and $3p$ subshells of argon over a large 34-eV energy range covering the Cooper minima in both subshells. The observed strong variations of the $3s-3p$ delay difference, including a sign change, are well reproduced by theoretical calculations using the Two-Photon Two-Color Random Phase Approximation with Exchange. Strong shake-up channels lead to photoelectrons spectrally overlapping with those emitted from the $3s$ subshell. These channels need to be included in our analysis to reproduce the experimental data. Our measurements provide a stringent test for multielectronic theoretical models aiming at an accurate description of inter-channel correlation.

[1]  F. Quéré,et al.  Quantifying Decoherence in Attosecond Metrology , 2020 .

[2]  P. d'Oliveira,et al.  Angle-resolved studies of XUV–IR two-photon ionization in the RABBITT scheme , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[3]  M. Turconi,et al.  Spin–orbit-resolved spectral phase measurements around a Fano resonance , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[4]  P. Decleva,et al.  Angular dependent time delay near correlation induced Cooper minima , 2020, Journal of Physics B: Atomic, Molecular and Optical Physics.

[5]  T. Luu,et al.  Effect of electron correlations on attosecond photoionization delays in the vicinity of the Cooper minima of argon , 2019, 1907.01219.

[6]  J. M. Dahlström,et al.  Many-body calculations of two-photon, two color matrix elements for attosecond delays , 2019, Journal of Physics: Conference Series.

[7]  P. Agostini,et al.  Disentangling spectral phases of interfering autoionizing states from attosecond interferometric measurements , 2019, Physical review letters.

[8]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[9]  J. Burgdörfer,et al.  Absolute timing of the photoelectric effect , 2018, Nature.

[10]  Kenneth J. Schafer,et al.  Full Characterization of a Molecular Cooper Minimum Using High-Harmonic Spectroscopy , 2018, Applied Sciences.

[11]  U. Keller,et al.  Orientation-dependent stereo Wigner time delay and electron localization in a small molecule , 2018, Science.

[12]  F. Naseem,et al.  Simulation of angular-resolved RABBITT measurements in noble-gas atoms , 2018, Physical Review A.

[13]  L. Rading,et al.  Anisotropic photoemission time delays close to a Fano resonance , 2018, Nature Communications.

[14]  Alexandra S. Landsman,et al.  Attosecond Time Delay in Photoionization of Noble-Gas and Halogen Atoms , 2018 .

[15]  Á. Rubio,et al.  First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory , 2018, The European Physical Journal B.

[16]  D. Descamps,et al.  Attosecond-resolved photoionization of chiral molecules , 2017, Science.

[17]  M. Turconi,et al.  Time–frequency representation of autoionization dynamics in helium , 2017, 1709.07639.

[18]  R. Feifel,et al.  Photoionization in the time and frequency domain , 2017, Science.

[19]  R. Kienberger,et al.  Attosecond correlation dynamics , 2016, Nature Physics.

[20]  S. Pabst,et al.  Spin-orbit delays in photoemission , 2017 .

[21]  I. Jordan,et al.  Attosecond delays in molecular photoionization , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[22]  F. Martín,et al.  Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron , 2016, Science.

[23]  E. Lindroth,et al.  On the angular dependence of the photoemission time delay in helium , 2016, 1605.04539.

[24]  F. Martín,et al.  Spectral phase measurement of a Fano resonance using tunable attosecond pulses , 2015, Nature Communications.

[25]  M. Ivanov,et al.  Attosecond time delay in valence photoionization and photorecombination of argon: A time-dependent local-density-approximation study , 2015, 1505.01058.

[26]  L Gallmann,et al.  Resonance Effects in Photoemission Time Delays. , 2014, Physical review letters.

[27]  T. Fordell,et al.  Measurements of relative photoemission time delays in noble gas atoms , 2014 .

[28]  P. Agostini,et al.  Atomic delay in helium, neon, argon and krypton , 2014 .

[29]  J. M. Dahlström,et al.  Study of attosecond delays using perturbation diagrams and exterior complex scaling , 2014, 1404.3895.

[30]  J. Wheeler,et al.  Attosecond pulse shaping around a Cooper minimum. , 2013, Physical review letters.

[31]  A. Kheifets,et al.  Time delay in valence-shell photoionization of noble-gas atoms , 2013, 1302.4495.

[32]  J. M. Dahlström,et al.  Theory of attosecond delays in laser-assisted photoionization , 2011, 1112.4144.

[33]  J. M. Dahlström,et al.  Diagrammatic approach to attosecond delays in photoionization , 2012, 1211.2654.

[34]  Anne L'Huillier,et al.  Introduction to attosecond delays in photoionization , 2012 .

[35]  T. Fordell,et al.  Photoemission-time-delay measurements and calculations close to the 3s-ionization-cross-section minimum in Ar , 2012 .

[36]  T. Fordell,et al.  Probing single-photon ionization on the attosecond time scale. , 2010, Physical review letters.

[37]  J Burgdörfer,et al.  Delay in Photoemission , 2010, Science.

[38]  B. Carré,et al.  Phase-resolved attosecond near-threshold photoionization of molecular nitrogen , 2009, 2207.08310.

[39]  R. Holzwarth,et al.  Attosecond spectroscopy in condensed matter , 2007, Nature.

[40]  H. G. Muller,et al.  Attosecond Synchronization of High-Harmonic Soft X-rays , 2003, Science.

[41]  James A. R. Samson,et al.  Precision measurements of the total photoionization cross-sections of He, Ne, Ar, Kr, and Xe , 2002 .

[42]  Becker,et al.  Measurements of absolute Ar 3s photoionization cross sections. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[43]  Kelly,et al.  Correlation satellites in the photoelectron spectrum of argon. , 1989, Physical review. A, General physics.

[44]  Shirley,et al.  Observation of many new argon valence satellites near threshold. , 1988, Physical review letters.

[45]  A. Starace Theory of Atomic Photoionization , 1982 .

[46]  N. Cherepkov,et al.  Interference effects in photoionization of noble gas atoms outer s-subshells , 1972 .

[47]  Joseph L. Dehmer,et al.  Evidence of Effective Potential Barriers in the X‐Ray Absorption Spectra of Molecules , 1972 .

[48]  J. Cooper,et al.  Photoionization from Outer Atomic Subshells. A Model Study , 1962 .

[49]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[50]  F. Smith,et al.  Lifetime Matrix in Collision Theory , 1960 .

[51]  Eugene P. Wigner,et al.  Lower Limit for the Energy Derivative of the Scattering Phase Shift , 1955 .

[52]  H. Beutler Über Absorptionsserien von Argon, Krypton und Xenon zu Termen zwischen den beiden Ionisierungsgrenzen2P32/0 und2P12/0 , 1935 .