Electrochemical impedance study of initial lithium ion intercalation into graphite powders

[1]  F. E. Little,et al.  In situ investigation of electrochemical lithium intercalation into graphite powder , 2000 .

[2]  Kenji Fukuda,et al.  Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material , 2000 .

[3]  YoungJung Chang,et al.  Electrochemical Impedance Analysis for Lithium Ion Intercalation into Graphitized Carbons , 2000 .

[4]  C. Wan,et al.  Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries , 2000 .

[5]  Tao Zheng,et al.  Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures , 1999 .

[6]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[7]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[8]  K. Zaghib,et al.  7Li ‐ NMR of Well‐Graphitized Vapor‐Grown Carbon Fibers and Natural Graphite Negative Electrodes of Rechargeable Lithium‐Ion Batteries , 1999 .

[9]  S. Moon,et al.  Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements , 1999 .

[10]  E. Barsoukov,et al.  Effect of Low‐Temperature Conditions on Passive Layer Growth on Li Intercalation Materials In Situ Impedance Study , 1998 .

[11]  P. Novák,et al.  Graphites for lithium-ion cells : The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area , 1998 .

[12]  D. Aurbach,et al.  The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries , 1994 .

[13]  D. Aurbach,et al.  Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency , 1993 .