Computer assisted proof of drift orbits along normally hyperbolic manifolds

Normally hyperbolic invariant manifolds theory provides an efficient tool for proving diffusion in dynamical systems. In this paper we develop a methodology for computer assisted proofs of diffusion in a-priori chaotic systems based on this approach. We devise a method, which allows us to validate the needed conditions in a finite number of steps, which can be performed by a computer by means of rigorous-interval-arithmetic computations. We apply our method to the generalized standard map, obtaining diffusion over an explicit range of actions.

[1]  T. M. Seara,et al.  GEOMETRIC PROPERTIES OF THE SCATTERING MAP OF A NORMALLY HYPERBOLIC INVARIANT MANIFOLD , 2008 .

[2]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[3]  J. Littlewood The Lagrange Configuration in Celestial Mechanics , 1959 .

[4]  Amadeu Delshams Valdés,et al.  Poincaré-Melnikov-Arnold method for analytic planar maps , 1995 .

[5]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[6]  G. Alefeld lnclusion methods for systems of nonlinear equations-the interval Newton method and modifications , 2022 .

[7]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[8]  P. Lochak,et al.  Diffusion times and stability exponents for nearly integrable analytic systems , 2005 .

[9]  Rafael de la Llave,et al.  A Tutorial on Kam Theory , 2003 .

[10]  Improved stability for analytic quasi-convex nearly integrable systems and optimal speed of Arnold diffusion , 2017, 1701.06026.

[11]  V. Szebehely,et al.  Theory of Orbits: The Restricted Problem of Three Bodies , 1967 .

[12]  Peter W. Bates,et al.  Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space , 1998 .

[13]  Jianlu Zhang,et al.  Normally Hyperbolic Invariant Laminations and diffusive behaviour for the generalized Arnold example away from resonances , 2015, 1511.04835.

[14]  Peter W. Bates,et al.  Persistence of Overflowing Manifolds for Semiflow , 1999 .

[15]  J. Kovalevsky,et al.  Lectures in celestial mechanics , 1989 .

[16]  P. Zgliczyński,et al.  Transition tori in the planar restricted elliptic three-body problem , 2009, 0906.4896.

[17]  R. Llave,et al.  A General Mechanism of Diffusion in Hamiltonian Systems: Qualitative Results , 2014, Communications on Pure and Applied Mathematics.

[18]  Rafael de la Llave,et al.  A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold , 2020, Discrete & Continuous Dynamical Systems - A.

[19]  M. Capiński,et al.  Arnold Diffusion, Quantitative Estimates, and Stochastic Behavior in the Three‐Body Problem , 2018, Communications on Pure and Applied Mathematics.

[20]  Improved exponential stability for near-integrable quasi-convex Hamiltonians , 2010, 1004.1014.

[21]  Konstantin Mischaikow,et al.  Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..

[22]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[23]  Daniel Wilczak,et al.  CAPD: : DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems , 2020, Commun. Nonlinear Sci. Numer. Simul..

[24]  R. de la Llave,et al.  Arnold diffusion in the planar elliptic restricted three-body problem: mechanism and numerical verification , 2015, 1510.00591.

[25]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[26]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[27]  P. Bernard,et al.  Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders , 2016, 1701.05445.

[28]  Cone Conditions and Covering Relations for Topologically Normally Hyperbolic Invariant Manifolds , 2011, 1103.1959.

[29]  A. Delshams,et al.  Global Instability in the Restricted Planar Elliptic Three Body Problem , 2018, Communications in Mathematical Physics.

[30]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[31]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[32]  Ernest Fontich Julià,et al.  The parameterization method for invariant manifolds , 2006 .

[33]  Peter W. Bates,et al.  Approximately invariant manifolds and global dynamics of spike states , 2008 .

[34]  Shane D. Ross,et al.  Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. , 2000, Chaos.

[35]  Maciej J. Capinski,et al.  Computer Assisted Existence Proofs of Lyapunov Orbits at L2 and Transversal Intersections of Invariant Manifolds in the Jupiter-Sun PCR3BP , 2012, SIAM J. Appl. Dyn. Syst..

[36]  W. Kyner Invariant Manifolds , 1961 .

[37]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[38]  P. Zgliczynski,et al.  Covering relations, cone conditions and the stable manifold theorem , 2009 .

[39]  Jean-Pierre Marco,et al.  Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems , 2003 .

[40]  J. D. M. James,et al.  Computation of maximal local (un)stable manifold patches by the parameterization method , 2015, 1508.02615.

[41]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[42]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[43]  M. Capiński,et al.  Geometric proof for normally hyperbolic invariant manifolds , 2015, 1503.03323.

[44]  D. Turaev,et al.  Arnold Diffusion in A Priori Chaotic Symplectic Maps , 2017 .

[45]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .