Image-based surface reconstruction in geomorphometry – merits, limits and developments of a promising tool for geoscientists

[1]  S. Buckley,et al.  Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations , 2008, Journal of the Geological Society.

[2]  Mark W. Smith,et al.  From experimental plots to experimental landscapes: topography, erosion and deposition in sub‐humid badlands from Structure‐from‐Motion photogrammetry , 2015 .

[3]  Jochen Teizer,et al.  Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system , 2014 .

[4]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[5]  James Brasington,et al.  Reconstructing historic Glacial Lake Outburst Floods through numerical modelling and geomorphological assessment: Extreme events in the Himalaya , 2014 .

[6]  Gennady Gienko,et al.  Three‐dimensional modeling of coastal boulders using multi‐view image measurements , 2014 .

[7]  José Luis Pérez-García,et al.  USE OF A LIGHT UAV AND PHOTOGRAMMETRIC TECHNIQUES TO STUDY THE EVOLUTION OF A LANDSLIDE IN JAÉN (SOUTHERN SPAIN) , 2015 .

[8]  A. Abellán,et al.  Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring , 2010 .

[9]  M. Jaboyedoff,et al.  Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning , 2009 .

[10]  Á. Gómez‐Gutiérrez,et al.  Using 3D photo-reconstruction methods to estimate gully headcut erosion , 2014 .

[11]  S. Hobbs,et al.  Roughness measurements over an agricultural soil surface with Structure from Motion , 2014 .

[12]  M. R. James,et al.  Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico , 2012 .

[13]  Michel Jaboyedoff,et al.  Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains , 2015 .

[14]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[15]  John Wainwright,et al.  Sediment connectivity: a framework for understanding sediment transfer at multiple scales , 2015 .

[16]  D. Milan,et al.  Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river , 2007 .

[17]  Marc Pollefeys,et al.  Fast robust large-scale mapping from video and internet photo collections , 2010 .

[18]  Julia Armesto,et al.  Geometric Stability and Lens Decentering in Compact Digital Cameras , 2010, Sensors.

[19]  Justin Morgenroth,et al.  Assessment of tree structure using a 3D image analysis technique—A proof of concept , 2014 .

[20]  H. Maas,et al.  Quantitative Measurement of Soil Erosion from Tls and Uav Data , 2013 .

[21]  D. Petley,et al.  Combined Digital Photogrammetry and Time‐of‐Flight Laser Scanning for Monitoring Cliff Evolution , 2005 .

[22]  Andreas Kääb,et al.  Surface kinematics of periglacial sorted circles using structure-from-motion technology , 2013 .

[23]  K. Oost,et al.  Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms , 2016 .

[24]  A. Dégre,et al.  The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds , 2014 .

[25]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[26]  Michel Jaboyedoff,et al.  Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event , 2009 .

[27]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  Stefano Girardi,et al.  Discrimination between marls and limestones using intensity data from terrestrial laser scanner , 2009 .

[29]  C. Delacourt,et al.  Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy , 2015, Landslides.

[30]  G. Poropat Remote Characterisation of Surface Roughness of Rock Discontinuities , 2008 .

[31]  Alain De Wulf,et al.  Detailed recording of gully morphology in 3D through image-based modelling , 2015 .

[32]  Mark S. Diederichs,et al.  Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels , 2010 .

[33]  Samuel T. Thiele,et al.  Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology , 2014 .

[34]  Pablo J. Zarco-Tejada,et al.  The normalized topographic method: an automated procedure for gully mapping using GIS , 2014 .

[35]  J. Labadz,et al.  The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales , 2014 .

[36]  José Juan de Sanjosé-Blasco,et al.  Does HDR Pre-Processing Improve the Accuracy of 3D Models Obtained by Means of two Conventional SfM-MVS Software Packages? The Case of the Corral del Veleta Rock Glacier , 2015, Remote. Sens..

[37]  Doug Stead,et al.  An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: slope stability assessment through kinematic and numerical methods , 2015 .

[38]  S. Phinn,et al.  Measuring coral reef terrain roughness using 'Structure-from-Motion' close-range photogrammetry , 2015 .

[39]  Natan Micheletti,et al.  Investigating the geomorphological potential of freely available and accessible structure‐from‐motion photogrammetry using a smartphone , 2015 .

[40]  M. Favalli,et al.  Multiview 3D reconstruction in geosciences , 2012, Comput. Geosci..

[41]  J. Brasington,et al.  Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning , 2012 .

[42]  Yonghuai Liu,et al.  3D Imaging, Analysis and Applications , 2012, Springer London.

[43]  Nicola Casagli,et al.  Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds , 2011 .

[44]  Stuart Robson,et al.  Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery , 2014 .

[45]  Heiko Hirschmüller,et al.  Semi-Global Matching-Motivation, Developments and Applications , 2011 .

[46]  D. Delparte,et al.  Distributed under Creative Commons Cc-by 4.0 Integrating Structure-from-motion Photogrammetry with Geospatial Software as a Novel Technique for Quantifying 3d Ecological Characteristics of Coral Reefs , 2022 .

[47]  E. Mikhail,et al.  Introduction to modern photogrammetry , 2001 .

[48]  S. Jacquemoud,et al.  An advanced photogrammetric method to measure surface roughness: Application to volcanic terrains in the Piton de la Fournaise, Reunion Island , 2013 .

[49]  Steven M. Seitz,et al.  Time-lapse mining from internet photos , 2015, ACM Trans. Graph..

[50]  J. Revuelto,et al.  The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees) , 2015 .

[51]  Antonio Abellán,et al.  Progressive failure leading to the 3 December 2013 rockfall at Puigcercós scarp (Catalonia, Spain) , 2015, Landslides.

[52]  Aline Peltier,et al.  Insights into the evolution of the Yenkahe resurgent dome (Siwi caldera, Tanna Island, Vanuatu) inferred from aerial high-resolution photogrammetry , 2015 .

[53]  Dimitri Lague,et al.  Analyzing High Resolution Topography for Advancing the Understanding of Mass and Energy Transfer Through Landscapes: A Review , 2015 .

[54]  D. Lague,et al.  Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z) , 2013, 1302.1183.

[55]  J. A. Gomez,et al.  Comparing the accuracy of several field methods for measuring gully erosion , 2012 .

[56]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[57]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[58]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Pierre Karrasch,et al.  Measuring gullies by synergetic application of UAV and close range photogrammetry - A case study from Andalusia, Spain , 2015 .

[60]  Fabio Remondino,et al.  State of the art in high density image matching , 2014 .

[61]  M. Pierrot Deseilligny,et al.  APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES , 2012 .

[62]  Christopher A. Gomez Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006 , 2014 .

[63]  Peter Collier,et al.  The Impact on Topographic Mapping of Developments in Land and Air Survey: 1900-1939 , 2002 .

[64]  J. A. Gomez,et al.  SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network , 2015 .

[65]  Michael Becht,et al.  Determination of hydrological roughness by means of close range remote sensing , 2015 .

[66]  Shaohua Wang,et al.  A Robust Photogrammetric Processing Method of Low-Altitude UAV Images , 2015, Remote. Sens..

[67]  K. McGwire,et al.  Assessing the performance of structure‐from‐motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots , 2016 .

[68]  Claudio Delrieux,et al.  Structure-from-Motion Approach for Characterization of Bioerosion Patterns Using UAV Imagery , 2015, Sensors.

[69]  Changchang Wu,et al.  Critical Configurations for Radial Distortion Self-Calibration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  P. Tarolli,et al.  Bank erosion in agricultural drainage networks: new challenges from structure‐from‐motion photogrammetry for post‐event analysis , 2015 .

[71]  F. Visser,et al.  Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry , 2015 .

[72]  R. Barneveld,et al.  Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model , 2014 .

[73]  Mark A. Weltz,et al.  Evaluation of structure from motion for soil microtopography measurement , 2014 .

[74]  Marco Dubbini,et al.  Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments , 2013, Remote. Sens..

[75]  D. Stead,et al.  Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts , 2009 .

[76]  Arko Lucieer,et al.  Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV) , 2015, Remote. Sens..

[77]  Srikanth Saripalli,et al.  Rapid mapping of ultrafine fault zone topography with structure from motion , 2014 .

[78]  A. Tamminga,et al.  UAS‐based remote sensing of fluvial change following an extreme flood event , 2015 .

[79]  Shuhab D. Khan,et al.  Application of multispectral LiDAR to automated virtual outcrop geology , 2014 .

[80]  G. Heritage,et al.  Towards a protocol for laser scanning in fluvial geomorphology , 2007 .

[81]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[82]  M. Jaboyedoff,et al.  Terrestrial laser scanning of rock slope instabilities , 2014 .

[83]  Andreas Kääb,et al.  Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[84]  Stefan B. Williams,et al.  Discovering salient regions on 3D photo-textured maps: Crowdsourcing interaction data from multitouch smartphones and tablets , 2015, Comput. Vis. Image Underst..

[85]  Christopher A. Gomez,et al.  A study of Japanese Landscapes using Structure from Motion Derived DSMs and DEMs based on Historical Aerial Photographs: New Opportunities for Vegetation Monitoring and Diachronic Geomorphology , 2015 .

[86]  Erle C. Ellis,et al.  High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision , 2013 .

[87]  A. Mynett,et al.  Urban flood modelling combining top-view LiDAR data with ground-view SfM observations , 2015 .

[88]  Andrew Pomfret,et al.  High resolution mapping of supra‐glacial drainage pathways reveals link between micro‐channel drainage density, surface roughness and surface reflectance , 2015 .

[89]  A. Gruen Development and Status of Image Matching in Photogrammetry , 2012 .

[90]  Danilo Schneider,et al.  Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel‐Axes UAV Images , 2015 .

[91]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[92]  Pablo J. Zarco-Tejada,et al.  Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods , 2014 .

[93]  Monica Bini,et al.  Abrasive notches along the Atlantic Patagonian coast and their potential use as sea level markers: the case of Puerto Deseado (Santa Cruz, Argentina) , 2014 .

[94]  A. Eltner,et al.  Accuracy constraints of terrestrial Lidar data for soil erosion measurement: Application to a Mediterranean field plot , 2015 .

[95]  Sharon A. Robinson,et al.  Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[96]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[97]  M. Nolan,et al.  Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry , 2015 .

[98]  Mike Kirkby,et al.  Reconstructing flash flood magnitudes using ‘Structure-from-Motion’: A rapid assessment tool , 2014 .

[99]  J. Dietrich Riverscape mapping with helicopter-based Structure-from-Motion photogrammetry , 2016 .

[100]  Mark Jackson,et al.  Real-time crowd-sourcing, data and modelling , 2015 .

[101]  S. M. Jong,et al.  High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles , 2014 .

[102]  Arko Lucieer,et al.  Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery , 2012, Remote. Sens..

[103]  Pablo J. Zarco-Tejada,et al.  High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials , 2015, Remote. Sens..

[104]  Jerry P. Fairley,et al.  Estimating surface roughness of terrestrial laser scan data using orthogonal distance regression , 2011 .

[105]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[106]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[107]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[108]  José Juan de Sanjosé-Blasco,et al.  Comparing Two Photo-Reconstruction Methods to Produce High Density Point Clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain) , 2014, Remote. Sens..

[109]  Changchang Wu,et al.  Towards Linear-Time Incremental Structure from Motion , 2013, 2013 International Conference on 3D Vision.

[110]  M. Crosetto,et al.  Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching , 2008 .

[111]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[112]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  S. M. Jong,et al.  Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography , 2014 .

[114]  Peter Kovesi,et al.  Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach , 2014, Comput. Geosci..

[115]  Gw Johnson,et al.  Stability of zoom and fixed lenses used with digital SLR cameras , 2006 .

[116]  Jürgen Schmidt,et al.  Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion , 2014, Remote. Sens..

[117]  S. Robson,et al.  Mitigating systematic error in topographic models derived from UAV and ground‐based image networks , 2014 .

[118]  H. Maas,et al.  Multi‐temporal UAV data for automatic measurement of rill and interrill erosion on loess soil , 2015 .

[119]  J. Brasington,et al.  Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry , 2014 .

[120]  Alberto Guarnieri,et al.  Use of terrestrial photogrammetry based on structure‐from‐motion for mass balance estimation of a small glacier in the Italian alps , 2015 .

[121]  J. Chandler Effective application of automated digital photogrammetry for geomorphological research: Earth Surf , 1999 .

[122]  Tom Edwards,et al.  A 4D Filtering and Calibration Technique for Small-Scale Point Cloud Change Detection with a Terrestrial Laser Scanner , 2015, Remote. Sens..

[123]  P. Tarolli,et al.  The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology , 2008 .

[124]  Guy Ducher Photogrammetry ― the largest operational application of remote sensing , 1987 .

[125]  P. Allemand,et al.  Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion , 2015 .

[126]  Jorge Torres-Sánchez,et al.  High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology , 2015, PloS one.

[127]  M. Menenti,et al.  Influence of range measurement noise on roughness characterization of rock surfaces using terrestrial laser scanning , 2011 .

[128]  Juliane Bendig,et al.  UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability , 2013 .

[129]  Mark S. Diederichs,et al.  Engineering monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR , 2009 .