Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy

[1]  Scot T. Martin,et al.  Water uptake characteristics of individual atmospheric particles having coatings , 2007 .

[2]  S. Martin,et al.  Hygroscopic Behavior of NaCl-Bearing Natural Aerosol Particles Using Environmental Transmission Electron Microscopy , 2007 .

[3]  K. Bowman,et al.  Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations , 2006 .

[4]  R. Hitzenberger,et al.  CCN activation of pure and coated carbon black particles. , 2006, Environmental science & technology.

[5]  J. Seinfeld,et al.  Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot , 2005 .

[6]  A. Petzold,et al.  On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles , 2005 .

[7]  A. Laskin,et al.  Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study , 2005 .

[8]  G. Biskos,et al.  Ozonolysis of mixed oleic-acid/stearic-acid particles: reaction kinetics and chemical morphology. , 2005, The journal of physical chemistry. A.

[9]  W. Malm,et al.  Hygroscopic properties of an organic-laden aerosol , 2005 .

[10]  S. Martin,et al.  Phase Transitions of Single Salt Particles Studied Using a Transmission Electron Microscope with an Environmental Cell , 2005 .

[11]  R. Zellner,et al.  Water uptake on mineral dust and soot: a fundamental view of the hydrophilicity of atmospheric particles? , 2005, Faraday discussions.

[12]  Sonia M. Kreidenweis,et al.  Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park , 2005 .

[13]  M. Gilles,et al.  Organic Aerosol Growth Mechanisms and Their Climate-Forcing Implications , 2004, Science.

[14]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[15]  P. Hobbs SAFARI 2000 CV-580 Aerosol and Cloud Data, Dry Season 2000 (CARG) , 2004 .

[16]  U. Lohmann,et al.  How efficient is cloud droplet formation of organic aerosols? , 2004 .

[17]  Thomas Peter,et al.  Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases , 2004 .

[18]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[19]  Ilan Koren,et al.  Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation , 2004, Science.

[20]  B. Svenningsson,et al.  CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase , 2004 .

[21]  K. Broekhuizen,et al.  Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species , 2004 .

[22]  P. Buseck,et al.  Atmospheric tar balls: Particles from biomass and biofuel burning , 2003 .

[23]  P. Buseck,et al.  Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles , 2003 .

[24]  T. Kirchstetter,et al.  Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution , 2003 .

[25]  P. Buseck,et al.  Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles , 2003 .

[26]  P. Pilewskie,et al.  Evolution of gases and particles from a savanna fire in South Africa , 2003 .

[27]  J. Seinfeld,et al.  Impact of biomass burning on cloud properties in the Amazon Basin , 2003 .

[28]  M. Ebert,et al.  Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles , 2002 .

[29]  M. Wendisch,et al.  STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea: 2. Aerosol scattering and absorption, and radiative calculations , 2002 .

[30]  David R. Cocker,et al.  The effect of water on gas-particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-trimethylbenzene photooxidation systems , 2001 .

[31]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[32]  Scot T. Martin,et al.  Phase Transitions of Aqueous Atmospheric Particles. , 2000, Chemical reviews.

[33]  Shaocai Yu Role of organic acids formic, acetic, pyruvic and / oxalic in the formation of cloud condensation / nuclei CCN : a review , 2000 .

[34]  N. Miller,et al.  Carbonaceous Particle Hydration III , 1999 .

[35]  C. Corrigan,et al.  Cloud condensation nucleus activity of organic compounds : a laboratory study , 1999 .

[36]  G. R. Williams,et al.  Carbonaceous particle hydration , 1999 .

[37]  Peter V. Hobbs,et al.  Humidification factors of aerosols from biomass burning in Brazil , 1998 .

[38]  W. Elbert,et al.  Airborne studies of aerosol emissions from savanna fires in , 1998 .

[39]  M. Facchini,et al.  Partitioning of the organic aerosol component between fog droplets and interstitial air , 1998 .

[40]  C. Corrigan,et al.  Cloud condensation nucleus activity of the organic component of biomass smoke particles , 1996 .

[41]  Gerhard Lammel,et al.  WATER NUCLEATION PROPERTIES OF CARBON BLACK AND DIESEL SOOT PARTICLES , 1995 .

[42]  J. Seinfeld,et al.  Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions , 1987 .

[43]  J. Seinfeld,et al.  Studies of concentrated electrolyte solutions using the electrodynamic balance. 3. Solute nucleation , 1987 .

[44]  Mark D. Cohen Studies of Concentrated Electrolyte Solutions Using the Electrodynamic Balance , 1987 .

[45]  E. Fluck,et al.  Gmelin handbook of inorganic and organometallic chemistry , 1975 .