GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.

The goal of molecular crystal structure prediction (CSP) is to find all the plausible polymorphs for a given molecule. This requires performing global optimization over a high-dimensional search space. Genetic algorithms (GAs) perform global optimization by starting from an initial population of structures and generating new candidate structures by breeding the fittest structures in the population. Typically, the fitness function is based on relative lattice energies, such that structures with lower energies have a higher probability of being selected for mating. GAs may be adapted to perform multi-modal optimization by using evolutionary niching methods that support the formation of several stable subpopulations and suppress the over-sampling of densely populated regions. Evolutionary niching is implemented in the GAtor molecular crystal structure prediction code by using techniques from machine learning to dynamically cluster the population into niches of structural similarity. A cluster-based fitness function is constructed such that structures in less populated clusters have a higher probability of being selected for breeding. Here, the effects of evolutionary niching are investigated for the crystal structure prediction of 1,3-dibromo-2-chloro-5-fluorobenzene. Using the cluster-based fitness function increases the success rate of generating the experimental structure and additional low-energy structures with similar packing motifs.

[1]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[2]  L. Ghiringhelli,et al.  Computational design of nanoclusters by property-based genetic algorithms: Tuning the electronic properties of (TiO2 )n clusters , 2015, 1501.05855.

[3]  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[4]  Á. Rubio,et al.  Exciton dispersion in molecular solids , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[6]  H. Simmons,et al.  Thiacyanocarbons. I. Tetracyano-1,4-dithiin, Tetracyanothiophene and Tricyano-1,4-dithiino [c]isothiazole , 1962 .

[7]  Alexandre Tkatchenko,et al.  Electrodynamic response and stability of molecular crystals , 2012, 1211.1683.

[8]  A. Otero-de-la-Roza,et al.  Van der Waals interactions in solids using the exchange-hole dipole moment model. , 2012, The Journal of chemical physics.

[9]  J. Bernstein,et al.  Facts and fictions about polymorphism. , 2015, Chemical Society reviews.

[10]  J. Perdew,et al.  Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation , 2016 .

[11]  J. Perdew,et al.  Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction , 2016, 1605.06971.

[12]  T. C. Lewis,et al.  A third blind test of crystal structure prediction. , 2005, Acta crystallographica. Section B, Structural science.

[13]  Mike Preuss,et al.  Multimodal Optimization by Means of Evolutionary Algorithms , 2015, Natural Computing Series.

[14]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[15]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[16]  P Verwer,et al.  A test of crystal structure prediction of small organic molecules. , 2000, Acta crystallographica. Section B, Structural science.

[17]  M. Finnis,et al.  A genetic algorithm for predicting the structures of interfaces in multicomponent systems. , 2010, Nature materials.

[18]  Alexandre Tkatchenko,et al.  Seamless and Accurate Modeling of Organic Molecular Materials. , 2013, The journal of physical chemistry letters.

[19]  Bryce Meredig,et al.  A hybrid computational-experimental approach for automated crystal structure solution. , 2013, Nature materials.

[20]  A. Tkatchenko,et al.  First‐principles modeling of molecular crystals: structures and stabilities, temperature and pressure , 2017 .

[21]  M. Fitzgerald,et al.  Confirmation of the molecular structure of tetramethylene diperoxide dicarbamide (TMDD) and its sensitiveness properties. , 2015, The journal of physical chemistry. A.

[22]  Alex Zunger,et al.  Finding the lowest-energy crystal structure starting from randomly selected lattice vectors and atomic positions: first-principles evolutionary study of the Au–Pd, Cd–Pt, Al–Sc, Cu–Pd, Pd–Ti, and Ir–N binary systems , 2008 .

[23]  Alex Zunger,et al.  Global space-group optimization problem : Finding the stablest crystal structure without constraints , 2007 .

[24]  A. Tkatchenko,et al.  Nature of Hydrogen Bonds and S···S Interactions in the l-Cystine Crystal. , 2016, The journal of physical chemistry. A.

[25]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[26]  P. Niggli Krystallographische und strukturtheoretische Grundbegriffe , 1928 .

[27]  David C. Lonie,et al.  XtalOpt version r9: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[28]  D. Wales,et al.  Energy landscapes and persistent minima. , 2016, The Journal of chemical physics.

[29]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[30]  J. Dunitz Are crystal structures predictable? , 2003, Chemical communications.

[31]  O. Grassmann,et al.  Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening , 2015, Nature Communications.

[32]  G. Beran,et al.  A new era for ab initio molecular crystal lattice energy prediction. , 2014, Angewandte Chemie.

[33]  Joel Bernstein,et al.  Polymorphism in Molecular Crystals , 2002 .

[34]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[35]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  G. Day,et al.  Static and lattice vibrational energy differences between polymorphs , 2015 .

[37]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[38]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[39]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[40]  Qiang Zhu,et al.  Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. , 2012, Acta crystallographica. Section B, Structural science.

[41]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[42]  Álvaro Vázquez-Mayagoitia,et al.  GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. , 2018, Journal of chemical theory and computation.

[43]  Mario Valle,et al.  How to predict very large and complex crystal structures , 2010, Comput. Phys. Commun..

[44]  Sarah L. Price,et al.  A first principles prediction of the crystal structure of C6Br2ClFH2 , 2008 .

[45]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[46]  G. Day,et al.  A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital. , 2007, Physical chemistry chemical physics : PCCP.

[47]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[48]  J. Facelli,et al.  Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine. , 2015, Chemical physics letters.

[49]  Alexandre Tkatchenko,et al.  Collective many-body van der Waals interactions in molecular systems , 2012, Proceedings of the National Academy of Sciences.

[50]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[51]  M. Scheffler,et al.  Efficient ab initio schemes for finding thermodynamically stable and metastable atomic structures: benchmark of cascade genetic algorithms , 2014, 1409.8522.

[52]  Donald G. Truhlar,et al.  M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics , 2012 .

[53]  Alexandre Tkatchenko,et al.  Long-range correlation energy calculated from coupled atomic response functions. , 2013, The Journal of chemical physics.

[54]  Christophe M. L. Vande Velde,et al.  Structures of alkyl-substituted Tröger's base derivatives illustrate the importance of Z' for packing in the absence of strong crystal synthons. , 2010, Acta crystallographica. Section B, Structural science.

[55]  J. Steed,et al.  Packing problems: high Z' crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. , 2015, Chemical reviews.

[56]  A. Otero-de-la-Roza,et al.  Halogen Bonding from Dispersion-Corrected Density-Functional Theory: The Role of Delocalization Error. , 2014, Journal of chemical theory and computation.

[57]  Troy Van Voorhis,et al.  Dispersion interactions from a local polarizability model , 2010, 1004.4850.

[58]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[59]  J. Takeya Organic Single-Crystal Field-Effect Transistors , 2009 .

[60]  Pavel Hobza,et al.  Investigations into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. , 2008, Journal of chemical theory and computation.

[61]  James R. Morris,et al.  Genetic algorithm optimization of atomic clusters , 1996 .

[62]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[63]  A. Tkatchenko,et al.  Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. , 2014, Physical review letters.

[64]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[65]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[66]  Bjørk Hammer,et al.  Combining Evolutionary Algorithms with Clustering toward Rational Global Structure Optimization at the Atomic Scale. , 2017, Journal of chemical theory and computation.

[67]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[68]  Marek Sierka,et al.  Synergy between theory and experiment in structure resolution of low-dimensional oxides , 2010 .

[69]  S. Woodley,et al.  Modelling nano-clusters and nucleation. , 2010, Physical chemistry chemical physics : PCCP.

[70]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[71]  Mark E Tuckerman,et al.  Temperature-accelerated method for exploring polymorphism in molecular crystals based on free energy. , 2011, Physical review letters.

[72]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low-order scaling with cluster size , 1999, J. Comput. Chem..

[73]  K. Ho,et al.  Identification of post-pyrite phase transitions in SiO2 by a genetic algorithm , 2011 .

[74]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[75]  Tatsuo Hasegawa,et al.  Organic field-effect transistors using single crystals , 2009, Science and technology of advanced materials.

[76]  Eva Zurek,et al.  XtalOpt Version r10: An open-source evolutionary algorithm for crystal structure prediction , 2017, Comput. Phys. Commun..

[77]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[78]  Julio C. Facelli,et al.  Modified genetic algorithms to model cluster structures in medium-size silicon clusters , 2004 .

[79]  S. Price,et al.  The Complexity of Hydration of Phloroglucinol: A Comprehensive Structural and Thermodynamic Characterization , 2012, The journal of physical chemistry. B.

[80]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[81]  A. Tkatchenko Current Understanding of Van der Waals Effects in Realistic Materials , 2015 .

[82]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[83]  Alvaro Vazquez-Mayagoitia,et al.  Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation. , 2018, The Journal of chemical physics.

[84]  I. Křivý,et al.  A unified algorithm for determining the reduced (Niggli) cell , 1976 .

[85]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[86]  Richard G Hennig,et al.  A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[87]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[88]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction revisited. , 2007, The Journal of chemical physics.

[89]  Jan Hermann,et al.  First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. , 2017, Chemical reviews.

[90]  René Holm,et al.  The solid‐state continuum: a perspective on the interrelationships between different solid‐state forms in drug substance and drug product , 2015, The Journal of pharmacy and pharmacology.

[91]  Á. Rubio,et al.  Excitons in molecular crystals from first-principles many-body perturbation theory: Picene versus pentacene , 2012 .

[92]  M. Neumann Tailor-made force fields for crystal-structure prediction. , 2008, The journal of physical chemistry. B.

[93]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[94]  F. Leusen,et al.  Predictability of the polymorphs of small organic compounds: crystal structure predictions of four benchmark blind test molecules. , 2011, Physical chemistry chemical physics : PCCP.

[95]  Eva Zurek,et al.  RandSpg: An open-source program for generating atomistic crystal structures with specific spacegroups , 2017, Comput. Phys. Commun..

[96]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[97]  M. Moret,et al.  Rubrene Polymorphs and Derivatives: The Effect of Chemical Modification on the Crystal Structure , 2012 .

[98]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[99]  Pavel Hobza,et al.  Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules. , 2012, Journal of chemical theory and computation.

[100]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[101]  B. Gruber The relationship between reduced cells in a general Bravais lattice , 1973 .

[102]  K. Berland,et al.  Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks. , 2015, Physical review letters.

[103]  Matthias Scheffler,et al.  Stability and metastability of clusters in a reactive atmosphere: theoretical evidence for unexpected stoichiometries of MgMOx. , 2013, Physical review letters.

[104]  P D Adams,et al.  Numerically stable algorithms for the computation of reduced unit cells. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[105]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[106]  R. Johnston,et al.  Global optimization of clusters using electronic structure methods , 2013 .

[107]  W. Mooij,et al.  Multipoles versus charges in the 1999 crystal structure prediction test , 2001 .

[108]  Peter Salamon,et al.  Observation time scale, free-energy landscapes, and molecular symmetry , 2013, Proceedings of the National Academy of Sciences.

[109]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[110]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[111]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[112]  William Jones,et al.  An Assessment of Lattice Energy Minimization for the Prediction of Molecular Organic Crystal Structures , 2004 .

[113]  Sarah L. Price,et al.  Can computed crystal energy landscapes help understand pharmaceutical solids? , 2016, Chemical communications.

[114]  Karsten Reuter,et al.  Robustness of ‘cut and splice’ genetic algorithms in the structural optimization of atomic clusters , 2009 .

[115]  David H. Case,et al.  Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling , 2015, Journal of chemical theory and computation.

[116]  A. Otero-de-la-Roza,et al.  Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction. , 2017, Journal of chemical theory and computation.

[117]  Alex Zunger,et al.  Genetic design of enhanced valley splitting towards a spin qubit in silicon , 2013, Nature Communications.

[118]  Claire S. Adjiman,et al.  Report on the sixth blind test of organic crystal structure prediction methods , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[119]  Jan M. L. Martin,et al.  Halogen Bonds: Benchmarks and Theoretical Analysis. , 2013, Journal of chemical theory and computation.

[120]  F. Leusen,et al.  Crystal structure prediction of organic pigments: quinacridone as an example , 2007, Journal of applied crystallography.

[121]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[122]  N. Marom,et al.  Effect of packing motifs on the energy ranking and electronic properties of putative crystal structures of tricyano-1,4-dithiino[c]-isothiazole. , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[123]  Anubhav Jain,et al.  Performance of genetic algorithms in search for water splitting perovskites , 2013, Journal of Materials Science.

[124]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[125]  Min Ji,et al.  Comparing efficiencies of genetic and minima hopping algorithms for crystal structure prediction. , 2010, Physical chemistry chemical physics : PCCP.

[126]  Michele Ceriotti,et al.  Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol. , 2016, Physical review letters.

[127]  Qiang Zhu,et al.  The Third Ambient Aspirin Polymorph , 2017 .

[128]  F. Leusen,et al.  Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals. , 2009, The journal of physical chemistry. B.

[129]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional made simple. , 2009, Physical review letters.

[130]  Axel D. Becke,et al.  On the large‐gradient behavior of the density functional exchange energy , 1986 .

[131]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[132]  G. Beran Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. , 2016, Chemical reviews.

[133]  Francisco B. Pereira,et al.  An evolutionary algorithm for global minimum search of binary atomic clusters , 2010 .

[134]  A. Otero-de-la-Roza,et al.  A benchmark for non-covalent interactions in solids. , 2012, The Journal of chemical physics.

[135]  Robin Taylor,et al.  Molecular Interactions in Crystal Structures with Z′ > 1 , 2016 .

[136]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[137]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[138]  K. Morris,et al.  Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms , 2016, Molecular pharmaceutics.