Re-engineering the ribosome for efficient selenoprotein synthesis

i Acknowledgements ii Table of contents iii Abbreviations vi Chapter 1 Introduction 1 1.1 A ribosomal renaissance 1 1.2 Selenocysteine the 'unconventional' amino acid 10 1.3 The human selenoproteome 15 1.4 Selenocysteine incorporation 19 1.5 Progress towards efficient recombinant expression 21 1.6 A potential role for the ribosome in selenocysteine incorporation 26 1.7 Purview of thesis 29 Chapter 2 Materials and Methods 30 2.1 Chemicals 30 2.2 Enzymes 33 2.3 Bacterial media, stock solutions and buffers 34 2.4 General molecular biology 38 2.5 DNA sequencing and analysis 41 2.6 Protein electrophoresis and analysis 41 2.7 Bacterial host strains 42 2.8 Stock plasmids 46 2.9 Western blotting 48 2.10 Library construction 49 2.11 Chloramphenicol selection 50 2.12 5-Fluorouracil selection 50 2.13 Chlorophenylalanine selection 51 2.14 Chloramphenicol resistance assay 52

[1]  Qiong Liu,et al.  Evolution of selenoproteins in the metazoan , 2012, BMC Genomics.

[2]  Matthew D. Schultz,et al.  Release Factor One Is Nonessential in Escherichia coli , 2012, ACS chemical biology.

[3]  K. Caban,et al.  Selenocysteine Insertion Sequence (SECIS)-binding Protein 2 Alters Conformational Dynamics of Residues Involved in tRNA Accommodation in 80 S Ribosomes* , 2012, The Journal of Biological Chemistry.

[4]  O. Nureki,et al.  Pyrrolysine Analogs as Substrates for Bacterial Pyrrolysyl-tRNA Synthetase in Vitro and in Vivo , 2012, Bioscience, biotechnology, and biochemistry.

[5]  Roman G. Gerlach,et al.  Gaussia princeps Luciferase as a Reporter for Transcriptional Activity, Protein Secretion, and Protein-Protein Interactions in Salmonella enterica Serovar Typhimurium , 2011, Applied and Environmental Microbiology.

[6]  Shin-ichi Yokobori,et al.  tRNA Modification and Genetic Code Variations in Animal Mitochondria , 2011, Journal of nucleic acids.

[7]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[8]  A. Korostelev Structural aspects of translation termination on the ribosome. , 2011, RNA.

[9]  J. Chin Reprogramming the genetic code , 2011, The EMBO journal.

[10]  V. Gladyshev,et al.  Analyses of Fruit Flies That Do Not Express Selenoproteins or Express the Mouse Selenoprotein, Methionine Sulfoxide Reductase B1, Reveal a Role of Selenoproteins in Stress Resistance* , 2011, The Journal of Biological Chemistry.

[11]  Elias S. J. Arnér,et al.  Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. , 2011, Free radical biology & medicine.

[12]  J. Krzycki,et al.  The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine , 2011, Nature.

[13]  V. Gladyshev,et al.  Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. , 2011, Advances in nutrition.

[14]  G. Atkinson,et al.  An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea , 2011, BMC Evolutionary Biology.

[15]  K. Fredrick,et al.  Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection. , 2010, RNA.

[16]  M. Yusupov,et al.  Structural rearrangements of the ribosome at the tRNA proofreading step , 2010, Nature Structural &Molecular Biology.

[17]  M. Yohda,et al.  Biophysical characterization of highly active recombinant Gaussia luciferase expressed in Escherichia coli. , 2010, Biochimica et biophysica acta.

[18]  N. Malats,et al.  Selenium and Bladder Cancer Risk: a Meta-analysis , 2010, Cancer Epidemiology, Biomarkers & Prevention.

[19]  C. D. de Koster,et al.  Proteome-wide Alterations in Escherichia coli Translation Rates upon Anaerobiosis , 2010, Molecular & Cellular Proteomics.

[20]  Shigeyuki Yokoyama,et al.  Codon reassignment in the Escherichia coli genetic code , 2010, Nucleic acids research.

[21]  Joachim Frank,et al.  Structure and dynamics of a processive Brownian motor: the translating ribosome. , 2010, Annual review of biochemistry.

[22]  P. Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[23]  Elias S. J. Arnér Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? , 2010, Experimental cell research.

[24]  K. Khanna,et al.  Selenium and selenoproteins in health and disease. , 2010, Antioxidants & redox signaling.

[25]  G. Bulaj,et al.  Site-specific effects of diselenide bridges on the oxidative folding of a cystine knot peptide, omega-selenoconotoxin GVIA. , 2010, Biochemistry.

[26]  P. Schultz,et al.  Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon* , 2010, The Journal of Biological Chemistry.

[27]  Philip A. Romero,et al.  Exploring protein fitness landscapes by directed evolution , 2009, Nature Reviews Molecular Cell Biology.

[28]  G. King,et al.  Direct visualization of disulfide bonds through diselenide proxies using 77Se NMR spectroscopy. , 2009, Angewandte Chemie.

[29]  A. Böck,et al.  The many levels of control on bacterial selenoprotein synthesis. , 2009, Biochimica et biophysica acta.

[30]  M. Rother,et al.  Selenoproteins in Archaea and Gram-positive bacteria. , 2009, Biochimica et biophysica acta.

[31]  V. Gladyshev,et al.  Eukaryotic selenoproteins and selenoproteomes. , 2009, Biochimica et biophysica acta.

[32]  M. Rayman Selenoproteins and human health: insights from epidemiological data. , 2009, Biochimica et biophysica acta.

[33]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[34]  C. Hayes,et al.  Ribosomal Protein S12 and Aminoglycoside Antibiotics Modulate A-site mRNA Cleavage and Transfer-Messenger RNA Activity in Escherichia coli* , 2009, The Journal of Biological Chemistry.

[35]  R. Guigó,et al.  Low exchangeability of selenocysteine, the 21st amino acid, in vertebrate proteins. , 2009, Molecular biology and evolution.

[36]  J. Cate,et al.  Structures of the Ribosome in Intermediate States of Ratcheting , 2009, Science.

[37]  G. Luker,et al.  Bioluminescent CXCL12 fusion protein for cellular studies of CXCR4 and CXCR7. , 2009, BioTechniques.

[38]  S. Marzi,et al.  Structure-function insights into prokaryotic and eukaryotic translation initiation. , 2009, Current opinion in structural biology.

[39]  P. Lens,et al.  The essential toxin: the changing perception of selenium in environmental sciences. , 2009, The Science of the total environment.

[40]  Yi Xiao,et al.  A Method for Identification of Selenoprotein Genes in Archaeal Genomes , 2009, Genom. Proteom. Bioinform..

[41]  P. Hoffmann,et al.  The human selenoproteome: recent insights into functions and regulation , 2009, Cellular and Molecular Life Sciences.

[42]  S. Marzi,et al.  A structural view of translation initiation in bacteria , 2009, Cellular and Molecular Life Sciences.

[43]  Alfred Wittinghofer,et al.  Faculty Opinions recommendation of Insights into translational termination from the structure of RF2 bound to the ribosome. , 2009 .

[44]  Rachel Green,et al.  Quality control by the ribosome following peptide bond formation , 2009, Nature.

[45]  Jianyu Zhu,et al.  Crystal structure of a translation termination complex formed with release factor RF2 , 2008, Proceedings of the National Academy of Sciences.

[46]  R. Hondal,et al.  Selenium in thioredoxin reductase: a mechanistic perspective. , 2008, Biochemistry.

[47]  Jianlin Lei,et al.  Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. , 2008, Molecular cell.

[48]  Bruno P. Klaholz,et al.  Structure of the 30S translation initiation complex , 2008, Nature.

[49]  H. Noller,et al.  Structural basis for translation termination on the 70S ribosome , 2008, Nature.

[50]  Christopher V. Rao,et al.  Computational design of orthogonal ribosomes , 2008, Nucleic acids research.

[51]  G. Phillips,et al.  New pSC101-derivative cloning vectors with elevated copy numbers. , 2008, Plasmid.

[52]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[53]  Aleksandra Filipovska,et al.  Building a Parallel Metabolism within the Cell. , 2008, ACS chemical biology.

[54]  J. Andreesen,et al.  Factors and Selenocysteine Insertion Sequence Requirements for the Synthesis of Selenoproteins from a Gram-Positive Anaerobe in Escherichia coli , 2007, Applied and Environmental Microbiology.

[55]  V. Gladyshev,et al.  Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. , 2007, The Biochemical journal.

[56]  V. Gladyshev,et al.  Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life , 2007, Genome Biology.

[57]  J. Holton,et al.  A steric block in translation caused by the antibiotic spectinomycin. , 2007, ACS chemical biology.

[58]  A. Vila-Sanjurjo,et al.  Modulation of 16S rRNA function by ribosomal protein S12. , 2007, Biochimica et biophysica acta.

[59]  J. Chin,et al.  Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion , 2007, Nature Biotechnology.

[60]  J. Frank,et al.  RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors , 2007, Cell.

[61]  Kum Kum Khanna,et al.  From selenium to selenoproteins: synthesis, identity, and their role in human health. , 2007, Antioxidants & redox signaling.

[62]  Y. Hirabayashi,et al.  Identification and characterization of human ethanolaminephosphotransferase1 Published, JLR Papers in Press, November 28, 2006. , 2007, Journal of Lipid Research.

[63]  V. Gladyshev,et al.  Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes , 2006, PLoS biology.

[64]  Elias S. J. Arnér,et al.  Titration and Conditional Knockdown of the prfB Gene in Escherichia coli: Effects on Growth and Overproduction of the Recombinant Mammalian Selenoprotein Thioredoxin Reductase , 2006, Applied and Environmental Microbiology.

[65]  Yan Zhang,et al.  Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues , 2006, Genome Biology.

[66]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[67]  H. Noller Biochemical characterization of the ribosomal decoding site. , 2006, Biochimie.

[68]  S. Stone-Elander,et al.  Tagging recombinant proteins with a Sel-tag for purification, labeling with electrophilic compounds or radiolabeling with 11C , 2006, Nature Protocols.

[69]  M. Ehrenberg,et al.  How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. , 2006, Molecular cell.

[70]  D. Craik,et al.  α-Selenoconotoxins, a New Class of Potent α7 Neuronal Nicotinic Receptor Antagonists* , 2006, Journal of Biological Chemistry.

[71]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[72]  W. Tate,et al.  Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms , 2006, Nucleic acids research.

[73]  J. Chin,et al.  Functional epitopes at the ribosome subunit interface , 2006, Nature chemical biology.

[74]  J. Harney,et al.  Supramolecular Complexes Mediate Selenocysteine Incorporation In Vivo , 2006, Molecular and Cellular Biology.

[75]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[76]  G. Kryukov,et al.  The Plasmodium selenoproteome , 2006, Nucleic acids research.

[77]  M. Selmer,et al.  Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon , 2005, Cell.

[78]  K. Caban,et al.  Size matters: a view of selenocysteine incorporation from the ribosome , 2005, Cellular and Molecular Life Sciences.

[79]  M. Kozak,et al.  Regulation of translation via mRNA structure in prokaryotes and eukaryotes. , 2005, Gene.

[80]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[81]  Kurt Fredrick,et al.  Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. , 2005, RNA.

[82]  Elias S. J. Arnér,et al.  Selenocysteine in proteins-properties and biotechnological use. , 2005, Biochimica et biophysica acta.

[83]  Malte Beringer,et al.  Essential Mechanisms in the Catalysis of Peptide Bond Formation on the Ribosome* , 2005, Journal of Biological Chemistry.

[84]  S. Gromer,et al.  Human selenoproteins at a glance , 2005, Cellular and Molecular Life Sciences CMLS.

[85]  Harry F Noller,et al.  RNA Structure: Reading the Ribosome , 2005, Science.

[86]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[87]  V. Gladyshev,et al.  Evolution of selenium utilization traits , 2005, Genome Biology.

[88]  Joachim Frank,et al.  The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli , 2005, Cell.

[89]  Yan Zhang,et al.  Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies* , 2005, Journal of Biological Chemistry.

[90]  P. Copeland Making sense of nonsense: the evolution of selenocysteine usage in proteins , 2005, Genome Biology.

[91]  V. Gladyshev,et al.  Selenocysteine insertion directed by the 3′-UTR SECIS element in Escherichia coli , 2005, Nucleic acids research.

[92]  L. Chavatte,et al.  Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes , 2005, Nature Structural &Molecular Biology.

[93]  Luis Moroder,et al.  Isosteric replacement of sulfur with other chalcogens in peptides and proteins , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[94]  V. Gladyshev,et al.  The microbial selenoproteome of the Sargasso Sea , 2005, Genome Biology.

[95]  B. S. Laursen,et al.  Initiation of Protein Synthesis in Bacteria , 2005, Microbiology and Molecular Biology Reviews.

[96]  Gerhard K. H. Przemeck,et al.  Cytoplasmic Thioredoxin Reductase Is Essential for Embryogenesis but Dispensable for Cardiac Development , 2005, Molecular and Cellular Biology.

[97]  V. de Lorenzo,et al.  Adaptation of the Yeast URA3 Selection System to Gram-Negative Bacteria and Generation of a ΔbetCDE Pseudomonas putida Strain , 2005, Applied and Environmental Microbiology.

[98]  S. Elledge,et al.  MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules , 2005, Nature Genetics.

[99]  F. Schluenzen,et al.  X‐ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit , 2005, The EMBO journal.

[100]  M. Ehrenberg,et al.  Control of rRNA Synthesis in Escherichia coli: a Systems Biology Approach , 2004, Microbiology and Molecular Biology Reviews.

[101]  Ethan Will Taylor,et al.  Structure and dynamics of a predicted ferredoxin-like selenoprotein in Japanese encephalitis virus. , 2004, Journal of molecular graphics & modelling.

[102]  Bo Sun,et al.  Coxsackievirus B3 infection and its mutation in Keshan disease. , 2004, World journal of gastroenterology.

[103]  W. Wurst,et al.  Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function , 2004, Molecular and Cellular Biology.

[104]  Elias S. J. Arnér,et al.  Assessment of Production Conditions for Efficient Use of Escherichia coli in High-Yield Heterologous Recombinant Selenoprotein Synthesis , 2004, Applied and Environmental Microbiology.

[105]  B. Stoddard,et al.  Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference. , 2004, Biochemistry.

[106]  Rachel Green,et al.  The Active Site of the Ribosome Is Composed of Two Layers of Conserved Nucleotides with Distinct Roles in Peptide Bond Formation and Peptide Release , 2004, Cell.

[107]  Annette Sievers,et al.  The ribosome as an entropy trap. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  G. Kryukov,et al.  The prokaryotic selenoproteome , 2004, EMBO reports.

[109]  Cameron Neylon,et al.  Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. , 2004, Nucleic acids research.

[110]  G. Kroemer,et al.  Anti-apoptotic activity of the glutathione peroxidase homologue encoded by HIV-1 , 2004, Apoptosis.

[111]  D. Driscoll,et al.  Mechanism and regulation of selenoprotein synthesis. , 2003, Annual review of nutrition.

[112]  F. Ursini,et al.  Distinct Promoters Determine Alternative Transcription of gpx-4 into Phospholipid-Hydroperoxide Glutathione Peroxidase Variants* , 2003, Journal of Biological Chemistry.

[113]  R. Gunsalus,et al.  Coordinate Regulation of the Escherichia coli Formate Dehydrogenase fdnGHI and fdhF Genes in Response to Nitrate, Nitrite, and Formate: Roles for NarL and NarP , 2003, Journal of bacteriology.

[114]  R. Guigó,et al.  Characterization of Mammalian Selenoproteomes , 2003, Science.

[115]  M. Saito,et al.  Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. , 2003, Biochemical and biophysical research communications.

[116]  Zhi-zhen Wang [Central dogma of molecular biology]. , 2003, Sheng li ke xue jin zhan [Progress in physiology].

[117]  Måns Ehrenberg,et al.  Structure of the Escherichia coli ribosomal termination complex with release factor 2 , 2003, Nature.

[118]  Thomas A Steitz,et al.  The structural basis of large ribosomal subunit function. , 2002, Annual review of biochemistry.

[119]  M. Masters,et al.  Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU , 2002, Molecular microbiology.

[120]  P. Larsen,et al.  Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. , 2002, Endocrine reviews.

[121]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[122]  W. Tate,et al.  A dynamic competition between release factor 2 and the tRNASec decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H , 2001, The EMBO journal.

[123]  J. Frank,et al.  Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[124]  C R Woese,et al.  Translation: in retrospect and prospect. , 2001, RNA.

[125]  H. Noller,et al.  Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[126]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[127]  P. Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[128]  Philip T. Pienkos,et al.  DNA shuffling method for generating highly recombined genes and evolved enzymes , 2001, Nature Biotechnology.

[129]  I. Stansfield,et al.  Endless possibilities: translation termination and stop codon recognition. , 2001, Microbiology.

[130]  G. Kryukov,et al.  Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[131]  Elias S. J. Arnér,et al.  Physiological functions of thioredoxin and thioredoxin reductase. , 2000, European journal of biochemistry.

[132]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[133]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[134]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[135]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[136]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[137]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[138]  W. Zhang,et al.  Molecular modeling and in vitro activity of an HIV-1-encoded glutathione peroxidase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Elias S. J. Arnér,et al.  Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[140]  J. Baseman,et al.  Expression of UGA-Containing MycoplasmaGenes in Bacillus subtilis , 2000, Journal of bacteriology.

[141]  M. Uno,et al.  A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA , 2000, Nature.

[142]  Yoshihisa Watanabe,et al.  A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). , 2000, Gene.

[143]  A. Böck,et al.  High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. , 1999, Journal of molecular biology.

[144]  A. Cox,et al.  Hepatitis C virus encodes a selenium-dependent glutathione peroxidase gene , 1999, Medizinische Klinik.

[145]  J. Puglisi,et al.  Recognition of the codon-anticodon helix by ribosomal RNA. , 1999, Science.

[146]  C. Condon,et al.  Construction and Initial Characterization of Escherichia coli Strains with Few or No Intact Chromosomal rRNA Operons , 1999, Journal of bacteriology.

[147]  A. Böck,et al.  Dynamics and efficiency in vivo of UGA‐directed selenocysteine insertion at the ribosome , 1999, The EMBO journal.

[148]  M. Nomura Engineering of bacterial ribosomes: replacement of all seven Escherichia coli rRNA operons by a single plasmid-encoded operon. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[149]  C. Squires,et al.  An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[150]  V. Gladyshev,et al.  Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[151]  S J Remington,et al.  Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. , 1998, Structure.

[152]  J. Abel,et al.  A novel method for the purification of selenoprotein P from human plasma. , 1998, Archives of biochemistry and biophysics.

[153]  Y. Nakamura,et al.  Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[154]  K. Swiderek,et al.  Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. , 1998, Biochimica et biophysica acta.

[155]  J. Puglisi,et al.  Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[156]  Frances H. Arnold,et al.  Molecular evolution by staggered extension process (StEP) in vitro recombination , 1998, Nature Biotechnology.

[157]  M. Berry,et al.  Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. , 1998, Science.

[158]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[159]  H. Hara,et al.  A promoter for the first nine genes of the Escherichia coli mra cluster of cell division and cell envelope biosynthesis genes, including ftsI and ftsW , 1997, Journal of bacteriology.

[160]  H. Lai,et al.  High risk of HIV-related mortality is associated with selenium deficiency. , 1997, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[161]  M. Taketo,et al.  Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[162]  E. J. Murgola,et al.  Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16 S ribosomal RNA. , 1997, Journal of molecular biology.

[163]  A. Böck,et al.  Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. , 1997, Journal of molecular biology.

[164]  J. Vorholt,et al.  A selenium‐dependent and a selenium‐independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri , 1997, Molecular microbiology.

[165]  N. Copeland,et al.  Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[166]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[167]  T. Stadtman,et al.  A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[168]  E. J. Murgola,et al.  Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[169]  M. Raisbeck,et al.  Pathology of Experimentally Induced Chronic Selenosis (Alkali Disease) in Yearling Cattle , 1995, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[170]  J. Loscalzo,et al.  Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. , 1995, The Journal of clinical investigation.

[171]  M. Houslay,et al.  Chimeric constructs show that the unique N-terminal domain of the cyclic AMP phosphodiesterase RD1 (RNPDE4A1A; rPDE-IVA1) can confer membrane association upon the normally cytosolic protein chloramphenicol acetyltransferase. , 1995, The Biochemical journal.

[172]  U. Johanson,et al.  A new mutation in 16S rRNA of Escherichia coli conferring spectinomycin resistance. , 1995, Nucleic acids research.

[173]  G. Volckaert,et al.  Insertional re-activation of a chloramphenicol acetyltransferase misfolding mutant protein. , 1995, Protein engineering.

[174]  Kathleen L. Triman,et al.  The 16S ribosomal RNA mutation database (16SMDB) , 1994, Nucleic Acids Res..

[175]  H. Moine,et al.  Mutations in helix 34 of Escherichia coli 16 S ribosomal RNA have multiple effects on ribosome function and synthesis. , 1994, Journal of molecular biology.

[176]  M. Brink,et al.  Spectinomycin interacts specifically with the residues G1064 and C1192 in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation. , 1994, Nucleic acids research.

[177]  P. Kast pKSS--a second-generation general purpose cloning vector for efficient positive selection of recombinant clones. , 1994, Gene.

[178]  Chris M. Brown,et al.  Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. , 1993, Nucleic acids research.

[179]  H. Noller,et al.  Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[180]  L. Marechal-Drouard,et al.  Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes , 1992, Journal of bacteriology.

[181]  Potapov Ap,et al.  Effect of E. coli ribosomal protein S1 on the fidelity of the translational elongation step: reading and misreading of poly(U) and poly(dT). , 1992 .

[182]  C. Prescott,et al.  Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA. , 1992, Nucleic acids research.

[183]  M. Inouye,et al.  Overproduction of a selenocysteine‐containing polypeptide in Escherichia coli: the fdhF gene product , 1992, Molecular microbiology.

[184]  P. Kast,et al.  Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. , 1991, Journal of molecular biology.

[185]  A. Böck,et al.  Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[186]  H. U. Göringer,et al.  Mutations in 16S rRNA that affect UGA (stop codon)-directed translation termination. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[187]  A. Böck,et al.  Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme , 1991, Journal of bacteriology.

[188]  I. Blomfield,et al.  Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon , 1991, Molecular microbiology.

[189]  A G Leslie,et al.  Crystal structure of the aspartic acid-199----asparagine mutant of chloramphenicol acetyltransferase to 2.35-A resolution: structural consequences of disruption of a buried salt bridge. , 1990, Biochemistry.

[190]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[191]  H. U. Göringer,et al.  A single mutation in 16S rRNA that affects mRNA binding and translation-termination. , 1990, Nucleic acids research.

[192]  A. Böck,et al.  Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis. , 1990, The Journal of biological chemistry.

[193]  A. Blanchard Ureaplasma urealyticum urease genes; use of a UGA tryptophan codon , 1990, Molecular microbiology.

[194]  H. Noller,et al.  Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. , 1990, Journal of molecular biology.

[195]  H. Noller,et al.  Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli. , 1989, Journal of molecular biology.

[196]  I A Murray,et al.  Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate. , 1988, Biochemistry.

[197]  R. Hartley,et al.  Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. , 1988, Journal of molecular biology.

[198]  W. Leinfelder,et al.  Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine , 1988, Nature.

[199]  M. Uhlén,et al.  A synthetic IgG-binding domain based on staphylococcal protein A. , 1987, Protein engineering.

[200]  A. Böck,et al.  Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[201]  S. Osawa,et al.  UGA is read as tryptophan in Mycoplasma capricolum. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[202]  J. Brosius,et al.  Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. , 1985, The Journal of biological chemistry.

[203]  A. Subramanian Structure and functions of the largest Escherichia coli ribosomal protein , 1984 .

[204]  G. Yang,et al.  Endemic selenium intoxication of humans in China. , 1983, The American journal of clinical nutrition.

[205]  R. Gutell,et al.  Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. , 1981, Plasmid.

[206]  T. Stadtman,et al.  Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[207]  A. Dahlberg,et al.  Binding of ribosomal protein S1 of Escherichia coli to the 3' end of 16S rRNA. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[208]  H. Ganther,et al.  Selenium: Biochemical Role as a Component of Glutathione Peroxidase , 1973, Science.

[209]  J. Murphy,et al.  Effects of Selenium Compounds on Formate Metabolism and Coincidence of Selenium-75 Incorporation and Formic Dehydrogenase Activity in Cell-Free Preparations of Escherchia coli , 1972, Journal of bacteriology.

[210]  M. E. Weeks,et al.  The discovery of the elements , 1968 .

[211]  D. Mills,et al.  An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[212]  M. Nirenberg,et al.  Degeneracy in the amino acid code. , 1966, Biochimica et biophysica acta.

[213]  J. Pinsent The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. , 1954, The Biochemical journal.

[214]  F. Murphy,et al.  The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA , 2013 .

[215]  Dieter Söll,et al.  Natural expansion of the genetic code. , 2007, Nature chemical biology.

[216]  E. Taylor,et al.  Computational genomic analysis of hemorrhagic fever viruses , 2007, Biological Trace Element Research.

[217]  Wolfgang Wintermeyer,et al.  How ribosomes make peptide bonds. , 2007, Trends in biochemical sciences.

[218]  Andrew D Ellington,et al.  Synthetic RNA circuits. , 2007, Nature chemical biology.

[219]  R. Nadimpalli,et al.  Genomic structures of viral agents in relation to the biosynthesis of selenoproteins , 2007, Biological Trace Element Research.

[220]  Nucleic Acids Research Advance Access published December 14, 2006 SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes , 2006 .

[221]  T. Silhavy,et al.  Microbial genetics: The art and design of genetic screens: Escherichia coli , 2003, Nature Reviews Genetics.

[222]  W. Coco,et al.  RACHITT: Gene family shuffling by Random Chimeragenesis on Transient Templates. , 2003, Methods in molecular biology.

[223]  A. Andreeva,et al.  Crystallization of type I chloramphenicol acetyltransferase: an approach based on the concept of ionic strength reducers. , 2000, Acta crystallographica. Section D, Biological crystallography.

[224]  M. Beck,et al.  Selenium and viral virulence. , 1999, British medical bulletin.

[225]  W. Tate,et al.  The translational stop signal: codon with a context, or extended factor recognition element? , 1996, Biochimie.

[226]  S. T. Gregory,et al.  Nonsense suppressor and antisuppressor mutations at the 1409-1491 base pair in the decoding region of Escherichia coli 16S rRNA. , 1995, Nucleic acids research.

[227]  S. Takeshita,et al.  High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. , 1987, Gene.

[228]  F. Crick On protein synthesis. , 1958, Symposia of the Society for Experimental Biology.

[229]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[230]  J. S. Morris,et al.  Printed in U.S.A. Copyright © 2000 by The Endocrine Society Effects of Selenium Deficiency on Tissue Selenium Content, Deiodinase Activity, and Thyroid Hormone Economy in the Rat during Development* , 2022 .