A New Sufficient Condition for the Static Output Feedback Stabilization of Linear Discrete-Time Systems

This paper addresses the problem of static output feedback stabilization of linear discrete-time systems. Based on Lyapunov stability theory, we propose a new sufficient synthesis condition that is expressed as a linear matrix inequality (LMI) feasibility problem and hence easily tractable by optimization techniques. Moreover, we have conducted extensive comparative experiments using our new condition and previously published ones. The results of these experiments, reported and discussed in this paper, show that our method proves a very good numerical performance compared to existing ones

[1]  Mohamed Boutayeb,et al.  Static output feedback stabilization with H/sub /spl infin// performance for linear discrete-time systems , 2005, IEEE Transactions on Automatic Control.

[2]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[3]  D. Henrion,et al.  Polynomial Matrices, LMIs and Static Output Feedback , 2001 .

[4]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[5]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[6]  Laurent El Ghaoui,et al.  Rank Minimization under LMI constraints: A Framework for Output Feedback Problems , 2007 .

[7]  Vincent D. Blondel,et al.  Survey on the State of Systems and Control , 1995, Eur. J. Control.

[8]  Germain Garcia,et al.  Stabilization of discrete time linear systems by static output feedback , 2001, IEEE Trans. Autom. Control..

[9]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  Indra Narayan Kar Design of static output feedback controller for uncertain systems , 1999, Autom..

[11]  Ian Postlethwaite,et al.  Static output feedback stabilisation with H∞ performance for a class of plants , 2001, Syst. Control. Lett..

[12]  K. Goh,et al.  Control system synthesis via bilinear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[13]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[14]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[17]  Vojtech Veselý,et al.  A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems , 2003, Kybernetika.

[18]  Michael G. Safonov,et al.  Global optimization for the Biaffine Matrix Inequality problem , 1995, J. Glob. Optim..