Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.

[1]  R. Nicoll,et al.  Phase Separation-Mediated TARP/MAGUK Complex Condensation and AMPA Receptor Synaptic Transmission , 2019, Neuron.

[2]  E. Gouaux,et al.  Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM , 2019, Science.

[3]  R. Nicoll,et al.  LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes , 2018, Proceedings of the National Academy of Sciences.

[4]  L. Mucke,et al.  Istradefylline reduces memory deficits in aging mice with amyloid pathology , 2018, Neurobiology of Disease.

[5]  Viktória Hudacsek,et al.  [Genome engineering using the CRISPR-Cas9 system and applications in cancer research]. , 2018, Magyar onkologia.

[6]  R. Nicoll,et al.  Synaptic homeostasis requires the membrane-proximal carboxy tail of GluA2 , 2017, Proceedings of the National Academy of Sciences.

[7]  R. Nicoll,et al.  Subunit-specific role for the amino-terminal domain of AMPA receptors in synaptic targeting , 2017, Proceedings of the National Academy of Sciences.

[8]  I. Greger,et al.  Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain , 2017, eLife.

[9]  R. Nicoll A Brief History of Long-Term Potentiation , 2017, Neuron.

[10]  R. Huganir,et al.  Extensive phosphorylation of AMPA receptors in neurons , 2016, Proceedings of the National Academy of Sciences.

[11]  Y. Hayashi,et al.  Stoichiometry and Phosphoisotypes of Hippocampal AMPA-Type Glutamate Receptor Phosphorylation , 2015, Neuron.

[12]  R. Nicoll,et al.  Efficient, Complete Deletion of Synaptic Proteins using CRISPR , 2014, Neuron.

[13]  Robert Langer,et al.  CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling , 2014, Cell.

[14]  R. Nicoll,et al.  CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses , 2013, Nature Neuroscience.

[15]  Richard L. Huganir,et al.  AMPARs and Synaptic Plasticity: The Last 25 Years , 2013, Neuron.

[16]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[17]  R. Nicoll,et al.  LTP requires a reserve pool of glutamate receptors independent of subunit type , 2012, Nature.

[18]  R. Nicoll,et al.  Subunit Composition of Synaptic AMPA Receptors Revealed by a Single-Cell Genetic Approach , 2009, Neuron.

[19]  Tarik F Haydar,et al.  Long-Term, Selective Gene Expression in Developing and Adult Hippocampal Pyramidal Neurons Using Focal In Utero Electroporation , 2007, The Journal of Neuroscience.

[20]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[21]  Gavin Rumbaugh,et al.  Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory , 2003, Cell.

[22]  Roberto Malinow,et al.  PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity , 2003, Nature Neuroscience.

[23]  R. Nicoll,et al.  Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[25]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[26]  J. Lübke,et al.  Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. , 1999, Science.

[27]  R. Huganir,et al.  Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II* , 1997, The Journal of Biological Chemistry.

[28]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[29]  R. Huganir,et al.  Characterization of Multiple Phosphorylation Sites on the AMPA Receptor GluR1 Subunit , 1996, Neuron.

[30]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[31]  G. Collingridge,et al.  The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning , 2017, Nature Neuroscience.

[32]  R. Huganir,et al.  Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. , 2010, Journal of neurophysiology.

[33]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.