Approximate Bayesian Computation

Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology).

[1]  Christian P Robert,et al.  Lack of confidence in approximate Bayesian computation model choice , 2011, Proceedings of the National Academy of Sciences.

[2]  D. Balding,et al.  Statistical Applications in Genetics and Molecular Biology On Optimal Selection of Summary Statistics for Approximate Bayesian Computation , 2011 .

[3]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[4]  G. Bertorelle,et al.  ABC as a flexible framework to estimate demography over space and time: some cons, many pros , 2010, Molecular ecology.

[5]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[6]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[7]  Joao S. Lopes,et al.  PopABC: a program to infer historical demographic parameters , 2009, Bioinform..

[8]  Laurent Excoffier,et al.  ABCtoolbox: a versatile toolkit for approximate Bayesian computations , 2010, BMC Bioinformatics.

[9]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[10]  Paul Fearnhead,et al.  Constructing Summary Statistics for Approximate Bayesian Computation: Semi-automatic ABC , 2010, 1004.1112.

[11]  Jukka Corander,et al.  In defence of model‐based inference in phylogeography , 2010, Molecular ecology.

[12]  Richard G. Everitt,et al.  Likelihood-free estimation of model evidence , 2011 .

[13]  Daniel Wegmann,et al.  Bayesian Computation and Model Selection Without Likelihoods , 2010, Genetics.

[14]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[15]  M. Bartlett The Spectral Analysis of Point Processes , 1963 .

[16]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[17]  James W. Taylor,et al.  Global dynamic optimization for parameter estimation in chemical kinetics. , 2006, The journal of physical chemistry. A.

[18]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[19]  D. Schaffer,et al.  The sonic hedgehog signaling system as a bistable genetic switch. , 2004, Biophysical journal.

[20]  Joachim M. Buhmann,et al.  Stable Bayesian Parameter Estimation for Biological Dynamical Systems , 2009, 2009 International Conference on Computational Science and Engineering.

[21]  L Lacey Knowles,et al.  Why Does a Method That Fails Continue to be Used? , 2008, Evolution; international journal of organic evolution.

[22]  Erika Cule,et al.  ABC-SysBio—approximate Bayesian computation in Python with GPU support , 2010, Bioinform..

[23]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[24]  G. Luikart,et al.  COMPUTER PROGRAMS: onesamp: a program to estimate effective population size using approximate Bayesian computation , 2008, Molecular ecology resources.

[25]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[26]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[27]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[28]  Jouko Lampinen,et al.  Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities , 2002, Neural Computation.

[29]  Guillaume Laval,et al.  Statistical Applications in Genetics and Molecular Biology Deviance Information Criteria for Model Selection in Approximate Bayesian Computation , 2011 .

[30]  J. Berger The case for objective Bayesian analysis , 2006 .

[31]  Francois Olivier,et al.  Deviance Information Criteria for Model Selection in Approximate Bayesian Computation , 2011 .

[32]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[33]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[34]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[35]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[36]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[37]  Katalin Csill'ery,et al.  abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.

[38]  Alan R Templeton,et al.  Coherent and incoherent inference in phylogeography and human evolution , 2010, Proceedings of the National Academy of Sciences.

[39]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[40]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Christian P Robert,et al.  Incoherent phylogeographic inference , 2010, Proceedings of the National Academy of Sciences.

[42]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[43]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[44]  Michael J. Hickerson,et al.  msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation , 2007, BMC Bioinformatics.

[45]  M W Bruford,et al.  2BAD: an application to estimate the parental contributions during two independent admixture events , 2010, Molecular ecology resources.

[46]  D G Hoel,et al.  The simulation, fitting, and testing of a stochastic cellular proliferation model. , 1971, Biometrics.

[47]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[48]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[49]  Alan R Templeton,et al.  Nested clade analysis: an extensively validated method for strong phylogeographic inference , 2008, Molecular ecology.

[50]  Alan R Templeton,et al.  Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation , 2009, Molecular ecology.

[51]  Sumeetpal S. Singh,et al.  Parameter Estimation for Hidden Markov Models with Intractable Likelihoods , 2011 .

[52]  Xizhou Feng,et al.  Parallel algorithms for Bayesian phylogenetic inference , 2003, J. Parallel Distributed Comput..

[53]  Alan R Templeton,et al.  Why Does a Method that Fails Continue to be Used? The Answer , 2009, Evolution; international journal of organic evolution.

[54]  Jean-Michel Marin,et al.  On some difficulties with a posterior probability approximation technique , 2008 .

[55]  L. Excoffier,et al.  Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood , 2009, Genetics.

[56]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[57]  Michael P. H. Stumpf,et al.  Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..

[58]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..

[59]  Mark A Beaumont,et al.  An Approximate Bayesian Computation Approach to Overcome Biases That Arise When Using Amplified Fragment Length Polymorphism Markers to Study Population Structure , 2008, Genetics.

[60]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[61]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[62]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[63]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[64]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .