Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio conditions

[1]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[2]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[3]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[4]  R. Weber Effect of Local Structure on the UV-Visible Absorption Edges of Molybdenum Oxide Clusters and Supported Molybdenum Oxides , 1995 .

[5]  G. Gurzadyan,et al.  The use of infrared up-conversion for the detection of 1.3 μm luminescence , 1998 .

[6]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[7]  B. Viana,et al.  Growth by laser ablation of Y2O3 and Tm∶Y2O3 thin films for optical applications , 2000 .

[8]  R. Roy,et al.  Hydrothermal synthesis of fine oxide powders , 2000 .

[9]  R. Sam Niedbala,et al.  Up-converting phosphor reporters for nucleic acid microarrays , 2001, Nature Biotechnology.

[10]  H. Ho,et al.  Multilayer Optical Storage Disc Based on the Frequency Up-Conversion Effect from Rare Earth Ions : Optics and Quantum Electronics , 2002 .

[11]  C. Goutaudier,et al.  Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method , 2002 .

[12]  Paras N. Prasad,et al.  Upconversion in Er3+:ZrO2 Nanocrystals , 2002 .

[13]  A. Speghini,et al.  Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+ , 2003 .

[14]  M. Meneses-Nava,et al.  Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+ , 2003 .

[15]  Wenjun Yang,et al.  Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors , 2004 .

[16]  Marco Bettinelli,et al.  Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals , 2004 .

[17]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[18]  E. Rosa,et al.  Synthesis, characterization and luminescence properties of ZrO2:Yb3+–Er3+ nanophosphor , 2005 .

[19]  André Vantomme,et al.  Fe-silicide nanostructures on Si(111)-root 3X root 3-Ag , 2005 .

[20]  Martinus H V Werts,et al.  Making sense of Lanthanide Luminescence , 2005, Science progress.

[21]  H. Güdel,et al.  Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor , 2005 .

[22]  Zhonghong Jiang,et al.  Upconversion emission in multi-doped glasses for full colour display , 2005 .

[23]  A. Patra,et al.  Blue upconversion emission of Tm3+–Yb3+ in ZrO2 nanocrystals: Role of Yb3+ ions , 2005 .

[24]  Liu Zhongxin,et al.  Upconversion luminescence dynamics in Er3+/Yb3+ codoped nanocrystalline yttria , 2006 .

[25]  H. Jenssen,et al.  Review of the properties of up-conversion phosphors for new emissive displays , 2006, Journal of Display Technology.

[26]  W. Qin,et al.  Effect of OH− on the upconversion luminescent efficiency of Y2O3:Yb3+, Er3+ nanostructures , 2006 .

[27]  E. Heumann,et al.  Semiconductor-laser-pumped high-power upconversion laser , 2006 .

[28]  P. A. Atanasov,et al.  Optically active Er3+–Yb3+ codoped Y2O3 films produced by pulsed laser deposition , 2006 .

[29]  W. Qin,et al.  Upconversion luminescence properties of Y2O3 : Yb3+, Er3+ nanostructures , 2006 .

[30]  E. Rosa,et al.  Effect of the CTAB concentration on the upconversion emission of ZrO2:Er3+ nanocrystals , 2006 .

[31]  J. Eiras,et al.  Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics , 2006 .

[32]  Marcella Giovannini,et al.  Mid-infrared single-photon counting. , 2006, Optics letters.

[33]  H. Chan,et al.  dc bias-induced dielectric anomalies in -oriented 0.9Pb(Mg[sub ⅓]Nb[sub ⅔]O₃)-0.1PbTiO₃ single crystals , 2006 .

[34]  Yanju Liu,et al.  Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals , 2007 .

[35]  Jing Li,et al.  Hydrothermal synthesis of Er-doped yttria nanorods with enhanced red emission via upconversion , 2007 .

[36]  P. Bénalloul,et al.  Luminescence, energy transfer, and upconversion mechanisms of Y 2 O 3 nanomaterials doped with Eu 3+ , Tb 3+ , Tm 3+ , Er 3+ , and Yb 3+ Ions , 2007 .

[37]  Chengren Li,et al.  Application to Temperature Sensor Based on Green Up-Conversion of Er3+ Doped Silicate Glass , 2007, Sensors.

[38]  Yongming Zhang,et al.  Upconversion luminescence of Y2O3:Er3+, Yb3+ nanoparticles prepared by a homogeneous precipitation method , 2008 .

[39]  H. Eilers Effect of particle/grain size on the optical properties of Y2O3:Er,Yb , 2009 .

[40]  Hai Guo,et al.  Preparation, characterization, and strong upconversion of monodisperse Y2O3:Er3+,Yb3+ microspheres , 2009 .

[41]  L. Díaz-Torres,et al.  Role of the Hydrothermal Synthesis Conditions on the Structure and Morphology of Co-Doped Y2O3:Er3+-Yb3+ Nanostructured Materials , 2010 .