Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio conditions
暂无分享,去创建一个
Luis Armando Diaz-Torres | A. Martínez | P. Salas | E. De la Rosa | E. Rosa | J. Oliva | L. Díaz-Torres | J. Morales | Jorge Oliva | H. Desirena | A. Martínez | P. Salas | H. Desirena | J. Morales | Ana Martínez | Ana Martínez
[1] P. Kubelka. Ein Beitrag zur Optik der Farban striche , 1931 .
[2] P. Kubelka,et al. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .
[3] R. Grigorovici,et al. Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.
[4] R. Weber. Effect of Local Structure on the UV-Visible Absorption Edges of Molybdenum Oxide Clusters and Supported Molybdenum Oxides , 1995 .
[5] G. Gurzadyan,et al. The use of infrared up-conversion for the detection of 1.3 μm luminescence , 1998 .
[6] Markus P. Hehlen,et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .
[7] B. Viana,et al. Growth by laser ablation of Y2O3 and Tm∶Y2O3 thin films for optical applications , 2000 .
[8] R. Roy,et al. Hydrothermal synthesis of fine oxide powders , 2000 .
[9] R. Sam Niedbala,et al. Up-converting phosphor reporters for nucleic acid microarrays , 2001, Nature Biotechnology.
[10] H. Ho,et al. Multilayer Optical Storage Disc Based on the Frequency Up-Conversion Effect from Rare Earth Ions : Optics and Quantum Electronics , 2002 .
[11] C. Goutaudier,et al. Correlation between dopant content and excited-state dynamics properties in Er3+–Yb3+-codoped Y2O3 by using a new combinatorial method , 2002 .
[12] Paras N. Prasad,et al. Upconversion in Er3+:ZrO2 Nanocrystals , 2002 .
[13] A. Speghini,et al. Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+ , 2003 .
[14] M. Meneses-Nava,et al. Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+ , 2003 .
[15] Wenjun Yang,et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors , 2004 .
[16] Marco Bettinelli,et al. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals , 2004 .
[17] F. Auzel. Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.
[18] E. Rosa,et al. Synthesis, characterization and luminescence properties of ZrO2:Yb3+–Er3+ nanophosphor , 2005 .
[19] André Vantomme,et al. Fe-silicide nanostructures on Si(111)-root 3X root 3-Ag , 2005 .
[20] Martinus H V Werts,et al. Making sense of Lanthanide Luminescence , 2005, Science progress.
[21] H. Güdel,et al. Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor , 2005 .
[22] Zhonghong Jiang,et al. Upconversion emission in multi-doped glasses for full colour display , 2005 .
[23] A. Patra,et al. Blue upconversion emission of Tm3+–Yb3+ in ZrO2 nanocrystals: Role of Yb3+ ions , 2005 .
[24] Liu Zhongxin,et al. Upconversion luminescence dynamics in Er3+/Yb3+ codoped nanocrystalline yttria , 2006 .
[25] H. Jenssen,et al. Review of the properties of up-conversion phosphors for new emissive displays , 2006, Journal of Display Technology.
[26] W. Qin,et al. Effect of OH− on the upconversion luminescent efficiency of Y2O3:Yb3+, Er3+ nanostructures , 2006 .
[27] E. Heumann,et al. Semiconductor-laser-pumped high-power upconversion laser , 2006 .
[28] P. A. Atanasov,et al. Optically active Er3+–Yb3+ codoped Y2O3 films produced by pulsed laser deposition , 2006 .
[29] W. Qin,et al. Upconversion luminescence properties of Y2O3 : Yb3+, Er3+ nanostructures , 2006 .
[30] E. Rosa,et al. Effect of the CTAB concentration on the upconversion emission of ZrO2:Er3+ nanocrystals , 2006 .
[31] J. Eiras,et al. Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics , 2006 .
[32] Marcella Giovannini,et al. Mid-infrared single-photon counting. , 2006, Optics letters.
[33] H. Chan,et al. dc bias-induced dielectric anomalies in -oriented 0.9Pb(Mg[sub ⅓]Nb[sub ⅔]O₃)-0.1PbTiO₃ single crystals , 2006 .
[34] Yanju Liu,et al. Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals , 2007 .
[35] Jing Li,et al. Hydrothermal synthesis of Er-doped yttria nanorods with enhanced red emission via upconversion , 2007 .
[36] P. Bénalloul,et al. Luminescence, energy transfer, and upconversion mechanisms of Y 2 O 3 nanomaterials doped with Eu 3+ , Tb 3+ , Tm 3+ , Er 3+ , and Yb 3+ Ions , 2007 .
[37] Chengren Li,et al. Application to Temperature Sensor Based on Green Up-Conversion of Er3+ Doped Silicate Glass , 2007, Sensors.
[38] Yongming Zhang,et al. Upconversion luminescence of Y2O3:Er3+, Yb3+ nanoparticles prepared by a homogeneous precipitation method , 2008 .
[39] H. Eilers. Effect of particle/grain size on the optical properties of Y2O3:Er,Yb , 2009 .
[40] Hai Guo,et al. Preparation, characterization, and strong upconversion of monodisperse Y2O3:Er3+,Yb3+ microspheres , 2009 .
[41] L. Díaz-Torres,et al. Role of the Hydrothermal Synthesis Conditions on the Structure and Morphology of Co-Doped Y2O3:Er3+-Yb3+ Nanostructured Materials , 2010 .