Wavelets-based clustering of multivariate time series

Crisp and fuzzy clustering methods based on a combination of univariate and multivariate wavelet features are considered for the clustering of multivariate time series. The performance of each of these methods is evaluated for stationary and variance nonstationary multivariate time series with different error correlation structures. The main outcomes of the simulation studies are are as follows: the superior performance of this approach for both the crisp and fuzzy cluster methods compared to some of the other approaches for clustering multivariate time series; the very good performance of the fuzzy relational method, overall, to cluster longer time series when all of them do not appear to group exclusively into well separated clusters. We consider an application to multivariate greenhouse gases time series and show that the crisp and fuzzy clustering methods considered are well validated.

[1]  Sylvia Kaufmann,et al.  Model-Based Clustering of Multiple Time Series , 2004 .

[2]  Jorge Caiado,et al.  A periodogram-based metric for time series classification , 2006, Comput. Stat. Data Anal..

[3]  Elizabeth Ann Maharaj,et al.  Wavelet-based Fuzzy Clustering of Time Series , 2010, J. Classif..

[4]  Pierpaolo D'Urso,et al.  Fuzzy Clustering for Data Time Arrays With Inlier and Outlier Time Trajectories , 2005, IEEE Transactions on Fuzzy Systems.

[5]  Pierpaolo D'Urso,et al.  A Fuzzy Clustering Model for Multivariate Spatial Time Series , 2010, J. Classif..

[6]  Elizabeth Ann Maharaj,et al.  Comparison and classification of stationary multivariate time series , 1999, Pattern Recognit..

[7]  T. Warren Liao,et al.  A clustering procedure for exploratory mining of vector time series , 2007, Pattern Recognit..

[8]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[9]  Hans-Hermann Bock,et al.  Advances in data science and classification , 1998 .

[10]  Edmond H. C. Wu,et al.  Independent Component Analysis for Clustering Multivariate Time Series Data , 2005, ADMA.

[11]  Hiroshi Yadohisa,et al.  Crisp and fuzzy k-means clustering algorithms for multivariate functional data , 2007, Comput. Stat..

[12]  Pierpaolo D'Urso,et al.  Dissimilarity measures for time trajectories , 2000 .

[13]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[14]  D. Seborg,et al.  Clustering multivariate time‐series data , 2005 .

[15]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[16]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[17]  Liang Wang,et al.  Structure-Based Statistical Features and Multivariate Time Series Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[18]  Pierpaolo D’Urso,et al.  Autocorrelation-based fuzzy clustering of time series , 2009, Fuzzy Sets Syst..

[19]  Pierpaolo D'Urso,et al.  Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization , 2006, Comput. Stat. Data Anal..

[20]  Vasilis J. Promponas,et al.  Clustering of biological time series by cepstral coefficients based distances , 2008, Pattern Recognit..

[21]  Xiaozhe Wang,et al.  Characteristic-Based Clustering for Time Series Data , 2006, Data Mining and Knowledge Discovery.

[22]  Pierpaolo D'Urso,et al.  The Geometric Approach to the Comparison of Multivariate Time Trajectories , 2001 .

[23]  Robert H. Shumway,et al.  Discrimination and Clustering for Multivariate Time Series , 1998 .

[24]  Elizabeth Ann Maharaj,et al.  Fuzzy clustering of time series in the frequency domain , 2011, Inf. Sci..

[25]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[26]  János Abonyi,et al.  Modified Gath-Geva clustering for fuzzy segmentation of multivariate time-series , 2005, Fuzzy Sets Syst..

[27]  Pierpaolo D'Urso Fuzzy C-Means Clustering Models For Multivariate Time-Varying Data: Different Approaches , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..