Novel fluorescence enhancement IgE assay using a DNA aptamer.

In this paper, we demonstrate a fluorescence immunoglobulin E (IgE) assay probe based on a DNA aptamer. A Texas red-labeled short DNA strand (T-DNA) complementary with part of the IgE aptamer sequence was used to produce the fluorescence enhancement effected upon the binding of IgE to the aptamer. Another short DNA strand labeled with dabcyl quencher (Q-DNA) complementary with part of the aptamer sequence nearby the T-DNA location was used to lower the background fluorescence. The IgE can be detected in the concentration range from 9.2 x 10(-11) to 3.7 x 10(-8) mol L(-1) with a detection limit of 5.7 x 10(-11) mol L(-1).

[1]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[2]  Christine A Dewitt,et al.  Hyperimmunoglobulin E syndrome: two cases and a review of the literature. , 2006, Journal of the American Academy of Dermatology.

[3]  Xiaobo Yu,et al.  Label-free electrochemical detection for aptamer-based array electrodes. , 2005, Analytical chemistry.

[4]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[5]  Razvan Nutiu,et al.  Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica. , 2005, Analytical chemistry.

[6]  J. Camarero NEW DEVELOPMENTS FOR THE SITE-SPECIFIC ATTACHMENT OF PROTEIN TO SURFACES , 2005 .

[7]  Giridharan Gokulrangan,et al.  DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. , 2005, Analytical chemistry.

[8]  Robert G Hamilton,et al.  In vitro assays for the diagnosis of IgE-mediated disorders. , 2004, The Journal of allergy and clinical immunology.

[9]  E. Peyrin,et al.  Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. , 2004, Analytical chemistry.

[10]  Sara Tombelli,et al.  New trends in affinity sensing: aptamers for ligand binding , 2003 .

[11]  K. Weeks,et al.  Fluorogenic resolution of ligand binding by a nucleic acid aptamer. , 2003, Journal of the American Chemical Society.

[12]  M. Berezovski,et al.  Using DNA-binding proteins as an analytical tool. , 2003, Journal of the American Chemical Society.

[13]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[14]  Andrew D Ellington,et al.  In vitro selection of molecular beacons. , 2003, Nucleic acids research.

[15]  L. McGown,et al.  Capillary electrochromatographic separation of bovine milk proteins using a G-quartet DNA stationary phase. , 2003, Journal of chromatography. A.

[16]  Abdul Malik,et al.  Effect of buffer, electric field, and separation time on detection of aptamer‐ligand complexes for affinity probe capillary electrophoresis , 2003, Electrophoresis.

[17]  Hans Wolf,et al.  An aptamer-based quartz crystal protein biosensor. , 2002, Analytical chemistry.

[18]  W. Tan,et al.  Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. , 2001, Analytical chemistry.

[19]  Joseph Wang,et al.  Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. , 2001, Analytical chemistry.

[20]  David Fear,et al.  The biology of IGE and the basis of allergic disease. , 2001, Annual review of immunology.

[21]  J. Hesselberth,et al.  Switching nucleic acids for antibodies , 2001, Nature Biotechnology.

[22]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[23]  R. Salamon,et al.  IgE serum level: a prognostic marker for AIDS in HIV-infected adults? , 1998, The Journal of allergy and clinical immunology.

[24]  J. Kinet,et al.  High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. , 1996, Journal of immunology.

[25]  G. Walker,et al.  Hybridization of fluorescein-labeled DNA oligomers detected by fluorescence anisotropy with protein binding enhancement. , 1995, Analytical chemistry.

[26]  P. Piunno,et al.  Fiber-optic DNA sensor for fluorometric nucleic acid determination. , 1995, Analytical chemistry.

[27]  B. J. Sutton,et al.  The human IgE network , 1993, Nature.

[28]  U. Krull,et al.  IMMOBILIZATION TECHNOLOGIES USED FOR NUCLEIC ACID BIOSENSORS : A REVIEW , 1999 .