Van der Waals Radii of Elements

The available data on the van der Waals radii of atoms in molecules and crystals are summarized. The nature of the continuous variation in interatomic distances from van der Waals to covalent values and the mechanisms of transformations between these types of chemical bonding are discussed.

[1]  Pekka Pyykkö,et al.  Strong Closed-Shell Interactions in Inorganic Chemistry. , 1997, Chemical reviews.

[2]  W. Zachariasen,et al.  The crystal structure of monoclinic metaboric acid , 1963 .

[3]  Henry A. Bent,et al.  Structural chemistry of donor-acceptor interactions , 1968 .

[4]  S. Batsanov Van der Waals Radii of Hydrogen in Gas-Phase and Condensed Molecules , 1999 .

[5]  R. Keller,et al.  Effect of pressure on the atom positions in Se and Te , 1977 .

[6]  M. Heaven,et al.  Spectroscopy of the A 2?X 2P transition of CH/DAr , 2000 .

[7]  Über die „Wirkungsradien“ gebundener Atome und den Orthoeffekt beim Dipolmoment , 1932 .

[8]  K. Whitmire,et al.  Syntheses and structures of the phenylbismuth/transition-metal carbonyl compounds [PPN][Ph2BiFe(CO)4], (Ph2Bi)2Fe(CO)4, [PhBiFe(CO)4]2 and Ph2BiMn(CO)5 , 1991 .

[9]  S. Batsanov On the additivity of van der Waals radii , 1998 .

[10]  José Elguero,et al.  Charge-Transfer Complexes between Dihalogen Compounds and Electron Donors , 1998 .

[11]  A. Gavezzotti,et al.  Attractions and Repulsions in Molecular Crystals: What Can Be Learned from the Crystal Structures of Condensed Ring Aromatic Hydrocarbons? , 1999 .

[12]  S. Batsanov Van der Waals radii of metals from spectroscopic data , 1994 .

[13]  N. Brese,et al.  Bond-valence parameters for anion-anion bonds in solids , 1992 .

[14]  S. Ikuta,et al.  Anisotropy of van der Waals radii of atoms in molecules: alkali-metal and halogen atoms , 1990 .

[15]  S. Batsanov Metallic radii of nonmetals , 1994 .

[16]  P. Pyykkö,et al.  Ab Initio Interpretation of the Closed-Shell Intermolecular E.cntdot..cntdot..cntdot.E Attraction in Dipnicogen (H2E-EH2)2 and Dichalcogen (HE-EH)2 Hydride Model Dimers , 1995 .

[17]  S. Batsanov Thermodynamic estimation of dissociation pressure parameters for solid molecular substances , 1992 .

[18]  G. K. Smelser The structure of the eye , 1961 .

[19]  Gerry,et al.  The Pure Rotational Spectra of AuCl and AuBr. , 2000, Journal of Molecular Spectroscopy.

[20]  Jerry Donohue The structures of the elements , 1974 .

[21]  S. Batsanov Van der Waals radii of elements from the data of structural inorganic chemistry , 1995 .

[22]  Fernando Pirani,et al.  Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2−O2 Dimer , 1999 .

[23]  S. Batsanov Anisotropy of the van der Waals Configuration of Atoms in Complex, Condensed, and Gas-Phase Molecules , 2001 .

[24]  S. Batsanov Anisotropy of Atomic Van der Waals Radii in the Gas-Phase and Condensed Molecules\sp{1} , 2000 .

[25]  N. L. Allinger Calculation of Molecular Structure and Energy by Force-Field Methods , 1976 .

[26]  Syassen,et al.  Rhombohedral to simple-cubic phase transition in arsenic under pressure. , 1990, Physical review. B, Condensed matter.

[27]  R. Chauvin,et al.  Explicit periodic trend of van der Waals radii , 1992 .

[28]  A. F. Holleman,et al.  Lehrbuch der anorganischen Chemie , 2010, Nature.

[29]  Attractions and Repulsions in Molecular Crystals: What Can Be Learned from the Crystal Structures of Condensed Ring Aromatic Hydrocarbons? , 1999 .

[30]  Norman L. Allinger,et al.  Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer-Hendrickson-Wiberg method , 1967 .

[31]  R. Bader,et al.  Molecular Charge Distributions and Chemical Binding. III. The Isoelectronic Series N2, CO, BF, and C2, BeO, LiF , 1968 .

[32]  C. Faerman,et al.  A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon , 1985 .

[33]  Robin Taylor,et al.  Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii , 1996 .

[34]  M. A. Dvorak,et al.  van der Waals vs. covalent bonding: microwave characterization of a structurally intermediate case , 1992 .

[35]  H. Lutz Bonding and structure of water molecules in solid hydrates. Correlation of spectroscopic and structural data , 1988 .

[36]  Holzapfel,et al.  High-pressure structural phase transitions in tellurium. , 1988, Physical review. B, Condensed matter.

[37]  A revision of van der Waals atomic radii for molecular crystals. II: hydrogen bonded to carbon , 1987 .

[38]  S. Batsanov Structure and properties of fluorine, oxygen, and nitrogen atoms in covalent bonds , 1989 .

[39]  Hans Bürgi Zur Beziehung zwischen Struktur und Energie: Bestimmung der Stereochemie von Reaktionswegen aus Kristallstrukturdaten , 1975 .

[40]  E. Dubler,et al.  Proof of the Existence of a Linear, Centrosymmetric Polyiodide Ion I: the crystal structure of Cu(NH3)4 I4 , 1975 .

[41]  H. Anno,et al.  Epitaxial growth of zincblende MnTe films as a new magneto-optical material , 1992 .

[42]  M. Misawa Molecular orientational correlation in liquid halogens , 1989 .

[43]  E. Mack,et al.  The Atomic Arrangement in the Crystal of Orthorhombic Iodine , 1928 .

[44]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[45]  W. H. Henneker,et al.  Molecular Charge Distributions and Chemical Binding , 1967 .

[46]  N. Runeberg,et al.  Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: The van der Waals properties of radon † , 1998 .

[47]  S. Batsanov Effect of high pressure on crystal electronegativities of elements , 1997 .

[48]  D. Cromer,et al.  Orbital Radii of Atoms and Ions , 1965 .

[49]  M. Straka,et al.  Ab initio studies of the dimers (HgH2)2 and (HgMe2)2. Metallophilic attraction and the van der Waals radii of mercury , 2000 .

[50]  M. Canagaratna,et al.  Partially Bonded Molecules from the Solid State to the Stratosphere , 1997 .

[51]  Kobayashi,et al.  Pressure-induced structural phase transition in sulfur at 83 GPa. , 1993, Physical review. B, Condensed matter.

[52]  E. Mack THE SPACING OF NON-POLAR MOLECULES IN CRYSTAL LATTICES. THE ATOMIC DOMAIN OF HYDROGEN. A NEW FEATURE OF STRUCTURE OF THE BENZENE RING , 1932 .

[53]  Y. Waseda,et al.  Electron Charge Distribution in Liquid Te , 1993 .

[54]  A. Bondi van der Waals Volumes and Radii , 1964 .

[55]  M. R. Chowdhury,et al.  A RISM analysis of structural data for tetrahedral molecular systems , 1983 .

[56]  S. Batsanov Calculation of van der Waals radii of atoms from bond distances , 1999 .

[57]  A. Gavezzotti,et al.  The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity , 1983 .

[58]  A. Gavezzotti,et al.  Empirical intermolecular potentials for organic crystals: the `6‐exp' approximation revisited , 1993 .

[59]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[60]  D. Ben‐Amotz,et al.  Estimation of effective diameters for molecular fluids , 1990 .

[61]  Norman L. Allinger,et al.  Molecular mechanics parameters , 1994 .

[62]  O. Shimomura,et al.  Structural aspects of dense solid halogens under high pressure studied by x-ray diffraction—Molecular dissociation and metallization , 1995 .

[63]  T. Kikegawa,et al.  An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .

[64]  Frank Weinhold,et al.  Natural steric analysis: Ab initio van der Waals radii of atoms and ions , 1997 .

[65]  S. Batsanov The atomic radii of the elements , 1991 .