A Skeleton Family Generator via Physics-Based Deformable Models

This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

[1]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[2]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[3]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[4]  K. Bathe Finite Element Procedures , 1995 .

[5]  Kaleem Siddiqi,et al.  Robust and efficient skeletal graphs , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[6]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[8]  Kaleem Siddiqi,et al.  Flux Maximizing Geometric Flows , 2001, ICCV.

[9]  Renato Perucchio,et al.  A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton , 2003, Pattern Recognit..

[10]  Gunilla Borgefors,et al.  On Digital Distance Transforms in Three Dimensions , 1996, Comput. Vis. Image Underst..

[11]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[12]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Edwin R. Hancock,et al.  A skeletal measure of 2D shape similarity , 2001, Comput. Vis. Image Underst..

[14]  Edwin R. Hancock,et al.  A Skeletal Measure of 2D Shape Similarity , 2001, IWVF.

[15]  Ioannis Pitas,et al.  Fast free-vibration modal analysis of 2-D physics-based deformable objects , 2005, IEEE Transactions on Image Processing.

[16]  Robert Kohn,et al.  Representation and self-similarity of shapes , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[17]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[18]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Chahab Nastar,et al.  Modèles physiques déformables et modes vibratoires pour l'analyse du mouvement non-rigide dans les images multidimensionnelles , 1994 .

[20]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1995, Proceedings of IEEE International Conference on Computer Vision.

[22]  Kaleem Siddiqi,et al.  Flux invariants for shape , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  P. Danielsson Euclidean distance mapping , 1980 .

[24]  Kin-Man Lam,et al.  Extraction of the Euclidean skeleton based on a connectivity criterion , 2003, Pattern Recognit..

[25]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[26]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Alex Pentland,et al.  Closed-Form Solutions for Physically Based Shape Modeling and Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ching-Shoei Chiang The Euclidean distance transform , 1992 .

[29]  Sibel Tari,et al.  An axis-based representation for recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[30]  G. Bueno,et al.  A joint physics-based statistical deformable model for multimodal brain image analysis , 2001, IEEE Transactions on Medical Imaging.

[31]  Jose L. Navalón,et al.  A thinning algorithm based on contours , 1987 .

[32]  Nicholas Ayache,et al.  Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Philip N. Klein,et al.  Recognition of Shapes by Editing Shock Graphs , 2001, ICCV.

[35]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .