Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers

An analysis of the threshold behavior of long-wavelength ( lambda =1.55 mu m) multiquantum well separate-confinement lasers with InGaAs wells and quaternary ( lambda /sub g/=1.3 mu m) barriers is presented. Using the effective mass approximation and Fermi statistics for carriers, an approximately logarithmic dependence of optical gain on carrier density for quantum well lasers with one confined electron state is predicted theoretically. This prediction is verified by measured threshold currents of broad-area lasers of various cavity lengths and different numbers of quantum wells. Moreover, the characteristic parameters, such as transparency current density, gain constant, and absorption outside the active region, are determined. >

[1]  M. J. Harlow,et al.  Reliable 1.5 mu m buried heterostructure, separate confinement, multiple quantum well (BH-SC-MQW) lasers entirely grown by metalorganic vapour-phase epitaxy (MOVPE) , 1989 .

[2]  R. Glew,et al.  Very low threshold current density SCH-MQW laser diodes emitting at 1.55 mu m , 1989 .

[3]  N. Dutta Calculated absorption, emission, and gain in In0.72Ga0.28As0.6P0.4 , 1980 .

[4]  J. Z. Wilcox,et al.  Gain‐ and threshold‐current dependence for multiple‐quantum‐well lasers , 1988 .

[5]  T. Kamiya,et al.  Band filling in GaAs/AlGaAs multiquantum well lasers and its effect on the threshold current , 1989 .

[6]  A. Kasukawa,et al.  1.5 mu m GaInAs/GaInAsP graded index separate confinement heterostructure multiple quantum well (GRIN-SCH-MQW) laser diodes grown by metalorganic chemical vapour deposition (MOCVD) , 1989 .

[7]  M. Fujiwara,et al.  Very narrow spectral linewidth of GaInAs MQW-DFB-PPIBH laser diodes , 1989 .

[8]  W. Tsang,et al.  Chapter 7 Quantum Confinement Heterostructure Semiconductor Lasers , 1987 .

[9]  Yasuhiko Arakawa,et al.  Quantum well lasers--Gain, spectra, dynamics , 1986 .

[10]  S. Hausser,et al.  Systematics of laser operation in GaAs/AlGaAs multiquantum well heterostructures , 1987 .

[11]  L. Coldren,et al.  Corrections to the expression for gain in GaAs , 1990 .

[12]  N. Sugiyama,et al.  Effects of well number, cavity length, and facet reflectivity on the reduction of threshold current of GaAs/AlGaAs multiquantum well lasers , 1988 .

[13]  N. Olsson,et al.  Fabrication and performance characteristics of 1.55‐μm InGaAsP multiquantum well ridge guide lasers , 1985 .

[14]  Masahiro Asada,et al.  Gain and intervalence band absorption in quantum-well lasers , 1984 .

[15]  Tsang,et al.  Excitonic lifetimes in thin InxGa1-xAs/InP quantum wells. , 1989, Physical review. B, Condensed matter.

[16]  M. Yamada,et al.  Anistropy and broadening of optical gain in a GaAs/AlGaAs multiquantum-well laser , 1985, IEEE Journal of Quantum Electronics.

[17]  John E. Bowers,et al.  Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser , 1987 .