Quantum-Dot Surface Emitting Distributed Feedback Lasers Using Indium–Tin–Oxide as Top Claddings

We demonstrate InAs/InGaAs quantum-dot surface emitting distributed feedback (SE-DFB) lasers, using an indium-tin-oxide layer as top cladding, which eliminates the regrowth process used in conventional DFB lasers to greatly simplify laser process. The lasing peak near 1.30 μm realized using the grating period of 375 nm exhibited a 0.13-nm linewidth and a low-temperature red-shift rate of 0.1 nm/K. The laser had a threshold current density of 210 A/cm2 and a characteristic temperature of 94.6 K. The surface emitting laser light had the divergence angles of less than 1° and 8°~9° along and perpendicular to the grating direction, respectively.

[1]  Chien-Ping Lee,et al.  GaSb-based mid infrared photonic crystal surface emitting laser , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[2]  A. Strittmatter,et al.  15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots , 2014 .

[3]  S. Noda,et al.  Watt-class high-power, high-beam-quality photonic-crystal lasers , 2014, Nature Photonics.

[4]  Chien-Ping Lee,et al.  Low repetition rate and broad frequency tuning from a grating-coupled passively mode-locked quantum dot laser , 2013 .

[5]  G. Roelkens,et al.  Hybrid III–V/Si Distributed-Feedback Laser Based on Adhesive Bonding , 2012, IEEE Photonics Technology Letters.

[6]  Gottfried Strasser,et al.  Two-dimensional broadband distributed-feedback quantum cascade laser arrays , 2011 .

[7]  Maria Ana Cataluna,et al.  Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers. , 2010, Optics express.

[8]  Yan Xiao,et al.  High-brightness 975-nm surface-emitting distributed feedback laser and arrays , 2010, Defense + Commercial Sensing.

[9]  C Meuer,et al.  Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. , 2010, Optics express.

[10]  Tzu-Wei Liu,et al.  Characteristics of GaN-based photonic crystal surface-emitting lasers , 2008, SPIE/OSA/IEEE Asia Communications and Photonics.

[11]  Alexey E. Zhukov,et al.  Quantum dot diode lasers for optical communication systems , 2008 .

[12]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[13]  C. Jin,et al.  Reduced temperature sensitivity of lasing wavelength in near-1.3 /spl mu/ InAs/GaAs quantum-dot laser with stepped composition strain-reducing layer , 2007 .

[14]  Hui Li,et al.  Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers , 2007 .

[15]  M. Hopkinson,et al.  Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-$\mu$m p-Type Modulation-Doped Quantum-Dot Laser , 2006, IEEE Journal of Quantum Electronics.

[16]  William W. Bewley,et al.  Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared , 2006 .

[17]  Mikhail V. Maximov,et al.  High-power 1.3μm InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system , 2005 .

[18]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[19]  Yasuhiko Arakawa,et al.  Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .

[20]  M. Telford QD lasers go to market , 2004 .

[21]  D. Bimberg Quantum dots for lasers, amplifiers and computing , 2003, CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671).

[22]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[23]  Dieter Bimberg,et al.  Quantum dots, lasers and amplifiers , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[24]  Mikhail V. Maximov,et al.  Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors , 2000 .

[25]  H. Ishikawa,et al.  Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device , 2000, IEEE Photonics Technology Letters.

[26]  O. Shchekin,et al.  Discrete energy level separation and the threshold temperature dependence of quantum dot lasers , 2000 .

[27]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[28]  Dieter Bimberg,et al.  Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition , 1997 .

[29]  V. Yang,et al.  Indium tin oxide transparent electrodes for broad-area top-emitting vertical-cavity lasers fabricated using a single lithography step , 1997, IEEE Photonics Technology Letters.

[30]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[31]  D. Bimberg,et al.  InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. , 1995, Physical review. B, Condensed matter.