Student admissions and faculty recruitment

The student admissions and faculty recruitment problems are modeled and analyzed in terms of graphs. Stable assignments, potentially exponential in number, form a distributive lattice whose sup and inf are the applicant-optimal and university-optimal stable assignments, μ A and μ U . Which one of all possible stable assignments should be chosen in practice is answered in these terms: μ A is characterized as the unique choice mechanism that is either monotone, or strategy-proof, or efficient. Similar characterizations are given for μ U , though as a practical matter they are not persuasive.

[1]  Michel Balinski,et al.  Les enjeux du recrutement , 2001 .

[2]  M. Balinski,et al.  A Tale of Two Mechanisms: Student Placement , 1999 .

[3]  Michel Balinski,et al.  Admissions and Recruitment , 2003, Am. Math. Mon..

[4]  Michel Balinski,et al.  Graphs and Marriages , 1998 .

[5]  Michel Balinski,et al.  Erratum: The Stable Allocation (or Ordinal Transportation) Problem , 2002, Math. Oper. Res..

[6]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[7]  Michel Balinski,et al.  The Stable Allocation (or Ordinal Transportation) Problem , 2002, Math. Oper. Res..

[8]  A. Roth The college admissions problem is not equivalent to the marriage problem , 1985 .

[9]  Donald E. Knuth Mariages stables et leurs relations avec d'autres problèmes combinatoires : introduction à l'analyse mathématique des algorithmes , 1976 .

[10]  Michel Balinski,et al.  Of Stable Marriages and Graphs, and Strategy and Polytopes , 1997, SIAM Rev..

[11]  Harry R. Lewis,et al.  Review of "Mariages stables et leur relations avec d'autre problèmes combinatoires: introduction à l'analyze mathématique des algorithmes" by Donald E. Knuth. Les Presses de l'Université de Montréal. , 1978, SIGA.

[12]  Michel Balinski,et al.  Many-to-many matching: stable polyandrous polygamy (or polygamous polyandry) , 2000, Discret. Appl. Math..

[13]  David Gale,et al.  Some remarks on the stable matching problem , 1985, Discret. Appl. Math..