Stretchable electronics: materials, architectures and integrations

Stretchable electronics, i.e. elastic electronics that can be bent and stretched, is a new, emerging class of electronics, based on building electronic circuits or devices on stretchable substrates. The potential applications range from fully conformable, stretchable, skin sensors for robotic devices, wearable electronic devices, to flesh-like biodevices. One of the challenges in the development of stretchable electronics is to retain full functionality under high external strains in stretching. In this paper, we review a few approaches recently developed for stretchable electronics and highlight recent research efforts on multi-directional writing for stretchable, three-dimensional structures. (Some figures may appear in colour only in the online journal)

[1]  E. Sacher,et al.  XPS Demonstration of π−π Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles , 2006 .

[2]  Guangwu Yang,et al.  Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation , 2008 .

[3]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[4]  David L. Kaplan,et al.  Biocompatible Silk Printed Optical Waveguides , 2009 .

[5]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Eric B Duoss,et al.  Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. , 2010, Chemical communications.

[7]  John A Rogers,et al.  Bend, buckle, and fold: mechanical engineering with nanomembranes. , 2009, ACS nano.

[8]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[9]  Robert F. Shepherd,et al.  Direct‐Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth , 2009 .

[10]  J. Dual,et al.  Mechanical Properties of the Intrinsically Conductive Polymer Poly(3,4- Ethylenedioxythiophene) Poly(Styrenesulfonate) (PEDOT/PSS) , 2007 .

[11]  George M. Whitesides,et al.  Microorigami: Fabrication of Small, Three-Dimensional, Metallic Structures , 2001 .

[12]  Kouhei Hosokawa,et al.  Nanoparticle Technology Handbook , 2009 .

[13]  R. Weiss,et al.  Conductive elastomeric foams prepared by in situ vapor phase polymerization of pyrrole and copolymerization of pyrrole and N-methylpyrrole , 1998 .

[14]  H. Choi,et al.  Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. , 2010, Nature nanotechnology.

[15]  K. West,et al.  Highly Stretchable and Conductive Polymer Material Made from Poly(3,4‐ethylenedioxythiophene) and Polyurethane Elastomers , 2007 .

[16]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[17]  J. Rogers,et al.  Multidimensional Architectures for Functional Optical Devices , 2010, Advanced materials.

[18]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[19]  L. Moresi,et al.  Writing of Wire Bonds Meniscus-Confined Three-Dimensional Electrodeposition for Direct , 2014 .

[20]  X. Tao,et al.  Prediction of fiber coating thickness via liquid-phase process , 2008 .

[21]  Replication techniques for a metal microcomponent having real 3D shape by microcasting process , 2005 .

[22]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[23]  C. Lea,et al.  A scientific guide to surface mount technology , 1988 .

[24]  T. Someya,et al.  Sheet-Type Braille Displays by Integrating Organic Field-Effect Transistors and Polymeric Actuators , 2007, IEEE Transactions on Electron Devices.

[25]  Bart Vandevelde,et al.  Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[26]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[27]  Robert Langer,et al.  Simple, three-dimensional microfabrication of electrodeposited structures. , 2003, Angewandte Chemie.

[28]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[29]  Youngseok Oh,et al.  Transparent conductive film fabrication using intercalating silver nanoparticles within carbon nanotube layers. , 2011, Journal of nanoscience and nanotechnology.

[30]  Jennie S. Hwang,et al.  Modern Solder Technology for Competitive Electronics Manufacturing , 1996 .

[31]  John A Rogers,et al.  Lateral buckling mechanics in silicon nanowires on elastomeric substrates. , 2009, Nano letters.

[32]  J. Lewis,et al.  Conformal Printing of Electrically Small Antennas on Three‐Dimensional Surfaces , 2011, Advanced materials.

[33]  K.E.G. Pitt,et al.  A scientific guide to surface mount technology , 1991 .

[34]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[35]  Jackman,et al.  Design and fabrication of topologically complex, three-dimensional microstructures , 1998, Science.

[36]  Michael G. Pecht,et al.  An investigation of the mechanical behavior of conductive elastomer interconnects , 2001, Microelectron. Reliab..

[37]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[38]  Anthony J. McHugh,et al.  Two-dimensional modeling of dry spinning of polymer fibers , 2004 .

[39]  G. Troster,et al.  Fundamental Building Blocks for Circuits on Textiles , 2007, IEEE Transactions on Advanced Packaging.

[40]  Yonggang Huang,et al.  Stretchable and compressible thin films of stiff materials on compliant wavy substrates , 2008 .

[41]  J. Lewis,et al.  3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures , 2011, Advanced functional materials.

[42]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[43]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[44]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[45]  Hyung-Kew Lee,et al.  A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment , 2006, Journal of Microelectromechanical Systems.

[46]  J. Vanfleteren,et al.  Design and Manufacturing of Stretchable High-Frequency Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[47]  Robert Puers,et al.  Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications , 2009 .

[48]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[49]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[50]  J. Lewis,et al.  Pen‐on‐Paper Flexible Electronics , 2011, Advanced materials.

[51]  G. Margaritondo,et al.  Three‐Dimensional Writing of Conducting Polymer Nanowire Arrays by Meniscus‐Guided Polymerization , 2011, Advanced materials.

[52]  S. Lacour,et al.  Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization , 2010 .

[53]  Kyung Wha Oh,et al.  Stretchable conductive fabric for electrotherapy , 2003 .

[54]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[55]  K. Chun,et al.  Functionalized nano-silver particles assembled on one-dimensional nanotube scaffolds for ultra-highly conductive silver/polymer composites , 2010 .

[56]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[57]  J. Vanfleteren,et al.  Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits , 2007, IEEE Electron Device Letters.

[58]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[59]  Dina Meoli,et al.  INTERACTIVE ELECTRONIC TEXTILE DEVELOPMENT: A Review of Technologies , 2002 .

[60]  Sigurd Wagner,et al.  Stretchable wavy metal interconnects , 2004 .

[61]  Ulrike Wallrabe,et al.  Unconventional applications of wire bonding create opportunities for microsystem integration , 2013 .

[62]  Christopher M Spadaccini,et al.  Photocurable Liquid Core–Fugitive Shell Printing of Optical Waveguides , 2011, Advanced materials.

[63]  John H. Xin,et al.  Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers , 2005 .

[64]  T. Tamai Electrical Properties of Conductive Elastomer as Electrical Contact Material , 1982 .

[65]  George M. Whitesides,et al.  Microsolidics: Fabrication of Three‐Dimensional Metallic Microstructures in Poly(dimethylsiloxane) , 2007 .

[66]  Toshihiro Itoh,et al.  Characterization of a SWNT-reinforced conductive polymer and patterning technique for applications of electronic textile , 2011 .

[67]  K. Oh,et al.  Electrically conductive textiles by in situ polymerization of aniline , 1999 .

[68]  C. Erkey,et al.  A Solvent-Free Process for Preparing Conductive Elastomers by an In Situ Polymerization of Pyrrole , 2002 .

[69]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[70]  J. Hausselt,et al.  Micro Powder Injection Molding , 2000, Micro Injection Molding.

[71]  F. He,et al.  Preparation of polypyrrole–polyurethane composite foam by vapor phase oxidative polymerization , 1995 .