Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices

We have introduced functionalized multiwalled carbon nanotubes (CNTs) in donor/acceptor-type photovoltaic devices. We fabricated the devices based on heterostructure between polymer-CNT composite and buckminsterfullerene (C60) layers. Due to the functional groups of the CNTs, a homogeneous blend of CNT-polymer composite could be obtained. In the composite, the nanotubes acted as exciton dissociation sites and also hopping centers for hole transport. The CNTs in the polymer-CNT∕C60 device provided higher exciton dissociation volume and increased mobility for carrier transport. We have observed an increase in open-circuit voltage and short-circuit current in the polymer-CNT∕C60 devices as compared to the polymer∕C60 ones.

[1]  Phaedon Avouris,et al.  Switching behavior of semiconducting carbon nanotubes under an external electric field , 2001 .

[2]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[3]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[4]  P. Sullivan,et al.  Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices , 2004 .

[5]  Emmanuel Kymakis,et al.  Photovoltaic Properties of Dye Functionalized Single-Wall Carbon Nanotube/Conjugated Polymer Devices , 2004 .

[6]  Mario G. Ancona,et al.  High-mobility Carbon-nanotube Thin-film Transistors on a Polymeric Substrate , 2005 .

[7]  Neil C. Greenham,et al.  Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices , 2003 .

[8]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[9]  H. Schmidt,et al.  Optical and Electronic Contributions in Double‐Heterojunction Organic Thin‐Film Solar Cells , 2003 .

[10]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[11]  Long Y. Chiang,et al.  Investigation of electrostatic self-assembly as a means to fabricate and interfacially modify polymer-based photovoltaic devices , 2003 .

[12]  Zhi‐Xin Guo,et al.  Concise route to functionalized carbon nanotubes , 2003 .

[13]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[14]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[15]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[16]  Emmanuel Kymakis,et al.  Single-wall carbon nanotube/conjugated polymer photovoltaic devices , 2002 .

[17]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[18]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[19]  Joseph Wang,et al.  Carbon nanotube--conducting-polymer composite nanowires. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Bandyopadhyay,et al.  Molecular level control of donor/acceptor heterostructures in organic photovoltaic devices , 2004 .