Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review

Abstract In this review, various applications of near-infrared hyperspectral imaging (NIR-HSI) in agriculture and in the quality control of agro-food products are presented. NIR-HSI is an emerging technique that combines classical NIR spectroscopy and imaging techniques in order to simultaneously obtain spectral and spatial information from a field or a sample. The technique is nondestructive, nonpolluting, fast, and relatively inexpensive per analysis. Currently, its applications in agriculture include vegetation mapping, crop disease, stress and yield detection, component identification in plants, and detection of impurities. There is growing interest in HSI for safety and quality assessments of agro-food products. The applications have been classified from the level of satellite images to the macroscopic or molecular level.

[1]  James H. Everitt,et al.  A CCD Camera‐based Hyperspectral Imaging System for Stationary and Airborne Applications , 2003 .

[2]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[3]  José Manuel Amigo,et al.  Study of pharmaceutical samples by NIR chemical-image and multivariate analysis , 2008 .

[4]  James R. Mansfield,et al.  Emerging Technology: Hyperspectral Imaging: , 2004 .

[5]  C. Gendrin,et al.  Content uniformity of pharmaceutical solid dosage forms by near infrared hyperspectral imaging: A feasibility study. , 2007, Talanta.

[6]  P. Geladi,et al.  Hyperspectral NIR imaging for calibration and prediction: a comparison between image and spectrometer data for studying organic and biological samples. , 2006, The Analyst.

[7]  S. Ustin,et al.  Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing , 2003 .

[8]  Rohit Bhargava,et al.  Spectrochemical Analysis and Hyperspectral Imaging of Latent Fingerprints , 2002 .

[9]  Alan M. Lefcourt,et al.  A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection , 2004 .

[10]  Ioanna Kakoulli,et al.  Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications , 2006 .

[11]  I. Murray,et al.  10 – NEAR INFRARED REFLECTANCE ANALYSIS OF FORAGES , 1986 .

[12]  Roger N. Clark,et al.  Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm , 1995 .

[13]  Michael Ngadi,et al.  Detection of omega-3 fatty acid in designer eggs using hyperspectral imaging , 2011, International journal of food sciences and nutrition.

[14]  John P. Kerekes,et al.  Compact active hyperspectral imaging system for the detection of concealed targets , 1999, Defense, Security, and Sensing.

[15]  Moon S. Kim,et al.  DETECTION OF SKIN TUMORS ON CHICKEN CARCASSES USING HYPERSPECTRAL FLUORESCENCE IMAGING , 2004 .

[16]  G. Camps-Valls,et al.  Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins , 2008 .

[17]  Petra Tatzer,et al.  Industrial application for inline material sorting using hyperspectral imaging in the NIR range , 2005, Real Time Imaging.

[18]  A. Soldado,et al.  Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment , 2009 .

[19]  Vincent Baeten,et al.  Screening of compound feeds using NIR hyperspectral data , 2006 .

[20]  A. Karnieli,et al.  Mapping of several soil properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils in Israel , 2002 .

[21]  Zofia Kozakiewicz,et al.  Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. , 2010, Research in microbiology.

[22]  J. Pierna,et al.  NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed , 2012 .

[23]  Hiroshi Okamoto,et al.  Mapping the spatial distribution of botanical composition and herbage mass in pastures using hyperspectral imaging , 2012 .

[24]  Colm P. O'Donnell,et al.  Hyperspectral imaging – an emerging process analytical tool for food quality and safety control , 2007 .

[25]  A. Peirs,et al.  Starch Index Determination of Apple Fruit by Means of a Hyperspectral near Infrared Reflectance Imaging System , 2003 .

[26]  Konstantinos Rapantzikos,et al.  Hyperspectral imaging: potential in non-destructive analysis of palimpsests , 2005, IEEE International Conference on Image Processing 2005.

[27]  A. Giebel,et al.  Early detection of Fusarium infection in wheat using hyper-spectral imaging , 2011 .

[28]  Wei E Huang,et al.  When single cell technology meets omics, the new toolbox of analytical biotechnology is emerging. , 2012, Current opinion in biotechnology.

[29]  Jasper G. Tallada,et al.  Predicting Maturity Quality Parameters of Strawberries Using Hyperspectral Imaging , 2004 .

[30]  Ashok Samal,et al.  Visible/near-infrared hyperspectral imaging for beef tenderness prediction , 2008 .

[31]  Gilles Rabatel,et al.  Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat , 2011 .

[32]  Amy E. Parker Williams,et al.  Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering , 2002 .

[33]  Edward M. Barnes,et al.  Ground-based remote sensing for assessing water and nitrogen status of broccoli , 2007 .

[34]  W. R. Windham,et al.  A Hyperspectral Imaging System for Identification of Faecal and Ingesta Contamination on Poultry Carcasses , 2003 .

[35]  Daniel L. Farkas,et al.  Spectral imaging in biomedicine: a selective overview , 1998, Optics & Photonics.

[36]  Gamal ElMasry,et al.  Principles of Hyperspectral Imaging Technology , 2010 .

[37]  Yankun Peng,et al.  Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique , 2012 .

[38]  Angelo Zanella,et al.  Supervised Multivariate Analysis of Hyper-spectral NIR Images to Evaluate the Starch Index of Apples , 2009 .

[39]  Wei Huang,et al.  The China Melamine Milk Scandal and its Implications for Food Safety Regulation , 2011 .

[40]  Jasper G. Tallada,et al.  11 – Quality Evaluation of Strawberries , 2008 .

[41]  Hiroshi Okamoto,et al.  Plant classification for weed detection using hyperspectral imaging with wavelet analysis , 2007 .

[42]  R. Merton,et al.  Multi-Temporal Analysis Of Community Scale Vegetation Stress With Imaging Spectroscopy , 1999 .

[43]  U. Rascher,et al.  Imaging plants dynamics in heterogenic environments. , 2012, Current opinion in biotechnology.

[44]  Yves Roggo,et al.  Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms , 2005 .

[45]  S. Oshita,et al.  Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. , 2011, Talanta.

[46]  Dolores Pérez-Marín,et al.  Pixel Selection for Near-Infrared Chemical Imaging (NIR-CI) Discrimination between Fish and Terrestrial Animal Species in Animal Protein by-Product Meals , 2011, Applied spectroscopy.

[47]  Ning Wang,et al.  Bruise Detection of Apples Using Hyperspectral Imaging , 2010 .

[48]  Ashok Samal,et al.  Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region , 2008 .

[49]  Vincent Baeten,et al.  On-line analysis of intact olive fruits by vis–NIR spectroscopy: Optimisation of the acquisition parameters , 2012 .

[50]  José Blasco,et al.  Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques , 2012, Expert Syst. Appl..

[51]  Kurt C. Lawrence,et al.  DETECTION OF CECAL CONTAMINANTS IN VISCERAL CAVITY OF BROILER CARCASSES USING HYPERSPECTRAL IMAGING , 2005 .

[52]  Bruce W. Pengra,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[53]  G Bonifazi,et al.  Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. , 2010, International journal of food microbiology.

[54]  Vincent Baeten,et al.  4.06 – Spectroscopic Imaging , 2009 .

[55]  Vincent Baeten,et al.  Detection of ergot bodies in cereals by NIRS and hyperspectral NIR imaging , 2013 .

[56]  A. Siddiqi,et al.  Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells , 2008, Cancer.

[57]  Stephen J. Symons,et al.  Using a Short Wavelength Infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels , 2009 .

[58]  B. Nicolai,et al.  Uncertainty analysis and modelling of the starch index during apple fruit maturation , 2002 .

[59]  Bruce J. Tromberg,et al.  Face Recognition in Hyperspectral Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  G. J. Fitzgerald,et al.  PORTABLE HYPERSPECTRAL TUNABLE IMAGING SYSTEM (PHyTIS) FOR PRECISION AGRICULTURE , 2004, Agronomy Journal.

[61]  Paul J. Williams,et al.  Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. , 2009, Analytica chimica acta.

[62]  G. V. D. Heijden,et al.  Imaging spectroscopy for on-farm measurement of grassland yield and quality , 2006 .

[63]  Javier Alda,et al.  Bad pixel identification by means of principal components analysis , 2002 .

[64]  Romà Tauler,et al.  Relevant aspects of quantification and sample heterogeneity in hyperspectral image resolution , 2012 .

[65]  Emanuela Gobbi,et al.  Prediction of milled maize fumonisin contamination by multispectral image analysis. , 2010 .

[66]  Andrew R. Harvey,et al.  Hyperspectral imaging for the detection of retinal disease , 2002, SPIE Optics + Photonics.

[67]  Lujia Han,et al.  The Potential of near Infrared Microscopy to Detect, Identify and Quantify Processed Animal by-Products , 2011 .

[68]  B. A. Weinstock,et al.  Prediction of Oil and Oleic Acid Concentrations in Individual Corn (Zea Mays L.) Kernels Using Near-Infrared Reflectance Hyperspectral Imaging and Multivariate Analysis , 2006, Applied spectroscopy.

[69]  S. Ustin,et al.  The role of environmental context in mapping invasive plants with hyperspectral image data , 2008 .

[70]  G. Northrop,et al.  Phonon Imaging: Theory and Applications , 1985 .

[71]  Philippe Lecomte,et al.  Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration , 2009 .

[72]  A. Ridley,et al.  Cell structure and dynamics. , 2011, Current opinion in cell biology.

[73]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[74]  Ioan Rotar,et al.  Research on Protein Content and Total Nitrogen and a Cob of Maize Strains by FT-NIR Spectrometry , 1970, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture.

[75]  N. H. Brogea,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2022 .

[76]  Yud-Ren Chen,et al.  Machine vision technology for agricultural applications , 2002 .

[77]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[78]  Emil W. Ciurczak,et al.  Handbook of Near-Infrared Analysis , 1992 .

[79]  R. Lu,et al.  Hyperspectral Scattering for assessing Peach Fruit Firmness , 2006 .

[80]  H. Michael Heise,et al.  Donald A. Burns, Emil W. Ciurczak (Eds.): Handbook of near-infrared analysis, 3rd ed. , 2009 .

[81]  J. Qin,et al.  Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence , 2009 .

[82]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[83]  Hiroshi Okamoto,et al.  Field mapping of chemical composition of forage using hyperspectral imaging in a grass meadow , 2008 .

[84]  Ivar Lund,et al.  Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). , 2011, Pest management science.

[85]  Stephen J. Symons,et al.  Comparison of short-wavelength infrared (SWIR) hyperspectral imaging system with an FT-NIR spectrophotometer for predicting alpha-amylase activities in individual Canadian Western Red Spring (CWRS) wheat kernels , 2011 .