暂无分享,去创建一个
[1] M. Wand,et al. Multivariate plug-in bandwidth selection , 1994 .
[2] Larry Wasserman,et al. Universal inference , 2019, Proceedings of the National Academy of Sciences.
[3] Kaspar Rufibach,et al. Active Set and EM Algorithms for Log-Concave Densities Based on Complete and Censored Data , 2007, 0707.4643.
[4] James Stephen Marron,et al. A simple root n bandwidth selector , 1991 .
[5] Christina Gloeckner,et al. Modern Applied Statistics With S , 2003 .
[6] Kohske Takahashi,et al. Welcome to the Tidyverse , 2019, J. Open Source Softw..
[7] M. Cule,et al. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density , 2009, 0908.4400.
[8] A. Genz,et al. Computation of Multivariate Normal and t Probabilities , 2009 .
[9] J. Behboodian. On the Modes of a Mixture of Two Normal Distributions , 1970 .
[10] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[11] Luca Scrucca,et al. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models , 2016, R J..
[12] M. Delignette-Muller,et al. fitdistrplus: An R Package for Fitting Distributions , 2015 .
[13] L. Dümbgen,et al. logcondens: Computations Related to Univariate Log-Concave Density Estimation , 2011 .
[14] M. Cule,et al. Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.
[15] Martin L. Hazelton,et al. Assessing log-concavity of multivariate densities , 2011 .
[16] Arlene K. H. Kim,et al. Global rates of convergence in log-concave density estimation , 2014, 1404.2298.
[17] R. Koenker,et al. Shape Constrained Density Estimation Via Penalized Rényi Divergence , 2018, Statistical Science.
[18] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[19] M. Hazelton,et al. Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation , 2005 .
[20] T. Duong,et al. Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices , 2010 .
[21] Franz Kappel,et al. An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..
[22] Franziska Wulf,et al. Minimization Methods For Non Differentiable Functions , 2016 .
[23] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[24] Robert B. Gramacy,et al. Maximum likelihood estimation of a multivariate log-concave density , 2010 .
[25] Alexander Rakhlin,et al. Optimality of Maximum Likelihood for Log-Concave Density Estimation and Bounded Convex Regression , 2019, 1903.05315.
[26] M. Bagnoli,et al. Log-concave probability and its applications , 2004 .
[27] R. Samworth,et al. Smoothed log-concave maximum likelihood estimation with applications , 2011, 1102.1191.
[28] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[29] Ralph Roskies,et al. Bridges: a uniquely flexible HPC resource for new communities and data analytics , 2015, XSEDE.
[30] M. An. Log-Concave Probability Distributions: Theory and Statistical Testing , 1996 .
[31] Nancy Wilkins-Diehr,et al. XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.
[32] Rahul Mazumder,et al. A new computational framework for log-concave density estimation , 2021 .
[33] W. Wong,et al. Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .
[34] M. Hazelton,et al. Plug-in bandwidth matrices for bivariate kernel density estimation , 2003 .
[35] Raymond J Carroll,et al. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error , 2011, Journal of the American Statistical Association.