Fluid pressure loading of a hyperelastic membrane

Abstract This paper examines the problem of the fluid pressure loading of a hyperelastic membrane made of a natural gum rubber, that is fixed along a circular boundary. The fluid pressure loading of hyperelastic membranes have several important technological applications particularly in the area of bio-medical engineering and the response of the membrane to fluid pressure loading can be useful in identifying the applicability of the various forms of strain energy functions that are proposed in the literature for describing hyperelastic behaviour. The results of the fluid pressure induced deflected profiles of the circular membrane together with computational modelling of the experiments are used to identify the range of applicability of several forms of strain energy functions for the hyperelastic materials.

[1]  Paulo B. Gonçalves,et al.  Nonlinear vibrations of a radially stretched circular hyperelastic membrane , 2009 .

[2]  F. S. Wong,et al.  Large plane deformations of thin elastic sheets of neo-Hookean material , 1969 .

[3]  A. Gent Extensibility of rubber under different types of deformation , 2005 .

[4]  D. Amodio,et al.  Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods , 2008 .

[5]  A. Selvadurai,et al.  Mechanics of a rate-dependent polymer network , 2007 .

[6]  Cornelius O. Horgan,et al.  On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers , 2009 .

[7]  A. Selvadurai,et al.  Modelling of Advection-Dominated Transport in a Porous Column with a Time-Decaying Flow Field , 2006 .

[8]  R. Batra,et al.  Treloar's Biaxial Tests and Kearsley's Bifurcation in Rubber Sheets , 2005 .

[9]  C. Horgan,et al.  Constitutive Models for Almost Incompressible Isotropic Elastic Rubber-like Materials , 2007 .

[10]  R. Rivlin The relation between the Valanis–Landel and classical strain-energy functions , 2006 .

[11]  A.P.S. Selvadurai,et al.  Deflections of a rubber membrane , 2006 .

[12]  Giuseppe Saccomandi,et al.  A Molecular-Statistical Basis for the Gent Constitutive Model of Rubber Elasticity , 2002 .

[13]  A. Spencer Continuum Mechanics , 1967, Nature.

[14]  A. Spencer,et al.  The Static Theory of Finite Elasticity , 1970 .

[15]  J. Bell,et al.  The experimental foundations of solid mechanics , 1984 .

[16]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[17]  A. Selvadurai,et al.  On the indentation of a polymeric membrane , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[19]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Werner Walter Klingbell,et al.  Some numerical investigations on empirical strain energy functions in the large axi-symmetric extensions of rubber membranes , 1964 .

[21]  E. Fried An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber elasticity , 2002 .

[22]  Mechanics and Thermomechanics of Rubberlike Solids , 2004 .

[23]  R. Rivlin Torsion of a Rubber Cylinder , 1947 .

[24]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[25]  A. Selvadurai,et al.  On the Indentation of a Chemically-treated Polymeric Membrane , 2005 .

[26]  R. Ogden Elasticity and Inelasticity of Rubber , 2004 .

[27]  A. Selvadurai,et al.  Second-order elasticity with axial symmetry—II. Spherical cavity and spherical rigid inclusion problems , 1988 .

[28]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[29]  O. Yeoh Some Forms of the Strain Energy Function for Rubber , 1993 .

[30]  A. Wineman,et al.  Chemorheological response of elastomers at elevated temperatures: Experiments and simulations , 2005 .

[31]  Ronald S. Rivlin,et al.  The Solution of Problems in Second Order Elasticity Theory , 1953 .

[32]  G. I. Barenblatt,et al.  Collected Papers Of R S Rivlin , 1997 .

[33]  Millard F. Beatty,et al.  Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers, and Biological Tissues—With Examples , 1987 .

[34]  A. Selvadurai,et al.  Constitutive modelling of a polymeric material subjected to chemical exposure , 2006 .

[35]  L. Treloar Stress-Strain Data for Vulcanized Rubber under Various Types of Deformation , 1944 .

[36]  M. A. Jaswon Large Elastic Deformations , 1962, Nature.

[37]  Alain Goriely,et al.  Instabilities in elastomers and in soft tissues , 2006, 0711.4664.

[38]  A. Selvadurai The distribution of stress in a rubber-like elastic material bounded internally by a rigid spherical inclusion subjected to a central force , 1975 .

[39]  A. Selvadurai,et al.  Mechanics of polymeric membranes subjected to chemical exposure , 2008 .

[40]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[41]  E. B. Spratt,et al.  Second-order effects in the deformation of elastic bodies , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  Yibin Fu,et al.  Nonlinear elasticity : theory and applications , 2001 .

[43]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  M. Boyce,et al.  Constitutive models of rubber elasticity: A review , 2000 .

[45]  Alain Goriely,et al.  Elastic Growth Models , 2008 .

[46]  Mario M. Attard,et al.  Hyperelastic constitutive modeling under finite strain , 2004 .

[47]  L. Treloar,et al.  The mechanics of rubber elasticity , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  D. Steigmann,et al.  Point loads on a hemispherical elastic membrane , 1995 .

[49]  A. Selvadurai,et al.  Second-order elasticity with axial symmetry—I General theory , 1972 .

[50]  K. A. Lurie,et al.  Nonlinear Theory of Elasticity , 2012 .

[51]  Ivonne Sgura,et al.  Fitting hyperelastic models to experimental data , 2004 .

[52]  A. Selvadurai Second-order elastic effects in the torsion of a spherical annular region , 1974 .

[53]  Alan Muhr,et al.  Constitutive Models for Rubber , 1999 .

[54]  Axisymmetric problems for an externally cracked elastic solid. I. Effect of a penny-shaped crack , 1987 .

[55]  R. Rivlin,et al.  Experiments on the Mechanics of Rubber II: The Torsion, Inflation and Extension of a Tube , 1952 .

[56]  L. Treloar,et al.  Stress-strain data for vulcanised rubber under various types of deformation , 1944 .

[57]  J. M. Hill Nonlinear Elasticity: Exact Integrals and Solutions for Finite Deformations of the Incompressible Varga Elastic Materials , 2001 .

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.