Low‐memory iterative density fitting

A new low‐memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix‐vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15‐fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12‐core CPU workstation. © 2015 Wiley Periodicals, Inc.

[1]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[2]  Patrizia Calaminici,et al.  Robust and efficient density fitting. , 2009, The Journal of chemical physics.

[3]  Florian Janetzko,et al.  A MinMax self-consistent-field approach for auxiliary density functional theory. , 2009, The Journal of chemical physics.

[4]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[5]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[6]  Paweł Sałek,et al.  Linear-scaling implementation of molecular electronic self-consistent field theory. , 2007, The Journal of chemical physics.

[7]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[8]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[9]  Notker Rösch,et al.  Variational fitting methods for electronic structure calculations , 2010 .

[10]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[11]  Brett I. Dunlap,et al.  Fitting the Coulomb potential variationally in Xα molecular calculations , 1983 .

[12]  Fast evaluation of the Coulomb energy for electron densities , 1997 .

[13]  B. Dunlap,et al.  Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry , 2000 .

[14]  Š. Varga On robust density fitting in molecules and extended systems , 2011 .

[15]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[16]  A. Burow Methoden zur Beschreibung von chemischen Strukturen beliebiger Dimensionalität mit der Dichtefunktionaltheorie unter periodischen Randbedingungen , 2011 .

[17]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[18]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[19]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[20]  Asbjörn M. Burow,et al.  Resolution of identity approximation for the Coulomb term in molecular and periodic systems. , 2009, The Journal of chemical physics.

[21]  J. Mintmire,et al.  Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations , 1982 .

[22]  Scarontefan Varga Long-range analysis of density fitting in extended systems† , 2008 .

[23]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[24]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[25]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[26]  Patrick Merlot,et al.  Attractive electron–electron interactions within robust local fitting approximations , 2013, J. Comput. Chem..

[27]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[28]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[29]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[30]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  Jorge Nocedal,et al.  Automatic Preconditioning by Limited Memory Quasi-Newton Updating , 1999, SIAM J. Optim..

[33]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[34]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[35]  Holger Dachsel,et al.  Fast and accurate determination of the Wigner rotation matrices in the fast multipole method. , 2006, The Journal of chemical physics.

[36]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[37]  A. St.-Amant,et al.  Linear scaling for the charge density fitting procedure of the linear combination of Gaussian-type orbitals density functional method , 1996 .

[38]  Henrik Koch,et al.  Method specific Cholesky decomposition: coulomb and exchange energies. , 2008, The Journal of chemical physics.

[39]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[40]  Gustavo E. Scuseria,et al.  Linear Scaling Density Functional Calculations with Gaussian Orbitals , 1999 .

[41]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[42]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[43]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[44]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .